Procjena nuklearne i radiološke
opasnosti za Republiku Hrvatsku

Revizija 0

DRŽAVNI ZAVOD ZA RADIOLOŠKU I NUKLEARNU SIGURNOST

prosinac 2018.
Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

Sadržaj

Sadržaj .. 3
Popis slika .. 4
Popis tablica .. 5
1. Uvod .. 6
 1.1. Nuklearne i radiološke opasnosti .. 6
2. Nuklearne opasnosti ... 8
 2.1. Nuklearni brod u unutarnjim morskim vodama ili teritorijalnom moru Republike Hrvatske .. 8
 2.1.1. Civilni brodovi ... 8
 2.1.2. Ratni brodovi .. 8
 2.1.3. Snaga reaktora .. 8
 2.1.4. Analiza rizika .. 8
 2.1.5. Zaključak .. 12
 2.2. Procjena ugroženosti Republike Hrvatske od Nuklearne elektrane Krško 13
 2.2.1. Specifična procjena ugroženosti za Nuklearnu elektranu Krško 13
 2.2.2. Generička procjena ugroženosti za lakovodne elektrane 14
 2.2.3. Posebne analize rađene za Nuklearnu elektranu Krško ... 26
 2.2.4. Zaključak .. 27
 2.3. Ostale elektrane .. 29
 2.4. Konačne zone .. 30
3. Radiološke opasnosti ... 45
 3.1. Udaljene nuklearne elektrane .. 45
 3.2. Pad satelita .. 49
 3.3. Radioaktivni izvori .. 49
 3.3.1. Otvoreni radioaktivni izvori .. 49
 3.3.2. Zatvoreni radioaktivni izvori .. 50
 3.3.3. Drugi izvanredni događaji .. 50
 3.4. Otkriven izvor bez posjednika ... 51
 3.5. Izvanredni događaj u transportu ... 52
4. Literatura ... 54
5. Kratice .. 56
Popis slika

Slika 1 – primjer rezultata za klasu Gerald R. Ford ... 11
Slika 2 – primjer rezultata za klasu Gerald R. Ford ... 12
Slika 3 – prikaz smanjenja koncentracije s udaljenošću ... 17
Slika 4 – doze za fetus bez primjene jodne profilakse .. 18
Slika 5 – kvalitativni prikaz zona PAZ i UPZ i međudržavne granice 20
Slika 6 – prikaz sektora prema HERCA-WENRA metodi .. 24
Slika 7 – zona UPZ oko Nuklearne elektrane Krško ... 41
Slika 8 – zona EPD oko Nuklearne elektrane Krško ... 42
Slika 9 – zona EPD oko Nuklearne elektrane Pakš ... 43
Slika 10 – zona ICPD oko Nuklearne elektrane Pakš .. 44
Slika 11 – lokacije energetskih reaktora udaljenih manje od 1000 km od jednog od četiri najveća hrvatska grada .. 48
Slika 12 – upotreba opasnih izvora i transportne rute u Republici Hrvatskoj 52
Popis tablica

Tablica 1 – preporučeni vanjski radijusi planskih zona ..16
Tablica 2 – vrijednosti JEF-ova ...21
Tablica 3 – mjere zaštite prema HERCA-WENRA ..22
Tablica 4 – mjere zaštite prema HERCA-WENRA kad je poznato vrijeme ispuštanja23
Tablica 5 – mjere zaštite prema HERCA-WENRA kad je izgubljen integritet zaštitne zgrade ..23
Tablica 6 – zona UPZ oko NEK ...30
Tablica 7 – zona EPD oko NEK ...32
Tablica 8 – zona EPD oko NE Pakš ...39
Tablica 9 – zona ICPD oko NE Pakš ..40
Tablica 10 – popis energetskih reaktora udaljenih manje od 1000 km od jednog od četiri najveća hrvatska grada ...45
1. Uvod
Procvjena nuklearnog i radiološke opasnosti je napravljena temeljem članka 7. Uredbe o mjerama zaštite od ionizirajućeg zračenja te postupanjima u slučaju izvanrednog događaja („Narodne novine“, br. 24/18, u daljnjem tekstu: Uredba) [1] kao podloga za određivanje planskih zona i područja primjene mjera zaštite.

1.1. Nuklearne i radiološke opasnosti
Nuklearnu i radiološku opasnost za Republicu Hrvatsku predstavljaju svi objekti i događaji kod kojih je moguća neobičajena situacija ili događaj (izvanredni događaj) koji uključuje izvor ionizirajućeg zračenja, a koji traži brzo djelovanje radi ublažavanja ozbiljnih štetnih posljedica po ljudsko zdravlje i sigurnost, kvalitetu života, imovinu ili okoliš u Republici Hrvatskoj, ili opasnost koja bi mogla prouzročiti gore navedene štetne posljedice.

Uredba [1] definira izvore izvanrednih događaja:

a) izvanredni događaj u nuklearnom elektrani Krško (Republika Slovenija), nuklearnom elektrani Pakš (Mađarska) te u drugim nuklearnim elektranama u svijetu

b) izvanredni događaj na nuklearnom brodu koji se nalazi u unutarnjim morskim vodama ili teritorijalnom moru Republike Hrvatske

c) izvanredni događaj na unaprijed poznatoj lokaciji stacionarnog izvora ionizirajućeg zračenja nositelja odobrenja odnosno unaprijed poznatoj lokaciji skladištenja pokretnog izvora ionizirajućeg zračenja nositelja odobrenja

d) izvanredni događaj prilikom zbrinjavanja radioaktivnog otpada

e) izvanredni događaj na lokaciji koja nije unaprijed poznata, uključujući izvanredni događaj u transportu, izvanredni događaj prilikom rada s pokretnim izvorima, otkriće izvora bez posjednika, teroristički čin, gubitak ili krađu radioaktivnog izvora, pad satelita, nedozvoljen promet radioaktivnih izvora, radioaktivnog otpada i nuklearnog materijala

f) radioaktivno onečišćenje ili povišeno izlaganje ionizirajućem zračenju izazvano nepoznatim okolnostima ili drugim okolnostima.

Uredba [1] također definira i kategorije pripravnosti za izvanredni događaj:

(1) Objekti prve kategorije pripravnosti za izvanredni događaj (u daljnjem tekstu: prva kategorija) su objekti u kojima izvanredni događaji mogu izazvati ozbiljne determinističke zdravstvene učinke izvan lokacije na kojoj se obavlja djelatnost i imati za posljedicu potrebu primjene hitnih i ranih mjera zaštite te drugih mjera izvan lokacije.

(2) Objekti druge kategorije pripravnosti za izvanredni događaj (u daljnjem tekstu: druga kategorija) su objekti u kojima izvanredni događaji mogu imati za posljedicu doze ionizirajućeg zračenja za stanovništvo zbog kojih bi bilo potrebno primijeniti hitne mjere zaštite ili rane mjere zaštite i druge mjere izvan lokacije objekta. Druga kategorija, za
razliku od prve kategorije, ne uključuje objekte u kojima izvanredni događaji mogu izazvati ozbiljne determinističke zdravstvene učinke izvan lokacije.

(3) Objekti treće kategorije pripravnosti za izvanredni događaj (u daljnjem tekstu: treća kategorija) su objekti u kojima izvanredni događaji mogu imati za posljedicu doze ionizirajućeg zračenja zbog kojih može biti potrebno primijeniti mjere zaštite na lokaciji nositelja odobrenja. Treća kategorija ne uključuje objekte za koje je potrebno odrediti planske zone i udaljenosti.

(4) Četvrtu kategoriju pripravnosti za izvanredni događaj (u daljnjem tekstu: četvrta kategorija) predstavljaju djelatnosti i radne aktivnosti koje mogu dovesti do izvanrednog događaja i imati za posljedicu potrebu primjene mjera zaštite na lokacijama koje nije moguće unaprijed predvidjeti.

(5) U četvrtnu kategoriju svrstavaju se:

– izvanredni događaji u prijevozu radioaktivnih izvora, nuklearnog materijala te radioaktivnog otpada
– izvanredni događaji prilikom korištenja pokretnih izvora ionizirajućeg zračenja kao što su industrijski radiografi
– nedozvoljeni promet radioaktivnih izvora i nuklearnog materijala na cestovnim i željezničkim graničnim prijelazima te pomorskim, riječnim i zračnim lukama
– izvanredni događaj pada satelita koji za proizvodnju energije koristi radioizotope
– izvanredni događaji otkrivanja izvora bez posjednika u otpadnom metalu ili drugdje
– izvanredni događaji koji imaju za posljedicu radioaktivno onečišćenje ili povišeno izlaganje ionizirajućem zračenju, a izazvani su drugim okolnostima, npr. vandalizam, sabotaža i terorizam
– transnacionalni izvanredni događaji nastali kao posljedica izvanrednih događaja na teritoriju drugih država, u objektima koji ne ulaze u petu kategoriju.

(6) Objekti pete kategorije pripravnosti za izvanredni događaj (u daljnjem tekstu: peta kategorija) su objekti prve i druge kategorije koji se nalaze na teritoriju druge države, a za koje postoje određene planske zone i udaljenosti na teritoriju Republike Hrvatske.

Navedene kategorije pripravnosti za izvanredni događaj su u skladu s međunarodno prihvaćenim kategorijama navedenim u IAEA Safety Standards Series No. GSR Part 7 [2].
2. Nuklearne opasnosti

Nuklearne opasnosti su izvanredni događaji u objektima prve, druge i pete kategorije pripravnosti za izvanredni događaj.

2.1. Nuklearni brod u unutarnjim morskim vodama ili teritorijalnom moru Republike Hrvatske

2.1.1. Civilni brodovi

Republika Hrvatska nema nuklearnih brodova i niti je vjerojatno da će ih u bližoj budućnosti imati. Civilni nuklearni brodovi u svijetu su vrlo rijetki. Trenutno su aktivni jedan teretni brod i nekoliko ledolomaca u Rusiji, oko Arktika [3].

U zadnjih deset godina ozbiljno se razmatra uvođenje nuklearnog pogona za teretne brodove [3]. Izrađeno je nekoliko studija o isplativosti. Procjenjuje se da bi se nuklearnja energija mogla koristiti za pogon brodova koji prevoze rasuti teret na stalnim rutama, pri prijevozu tereta gdje je važna brzina te za pogon velikih brodova za kružna putovanja. Povoljnim je ocijenjena i moguća upotreba nuklearnih reaktora za pogon velikih tankera koji prevoze ukapljeni plin.

Za pogon civilnih brodova u obzir dolaze reaktori od 70 MWt pa sve do 70 – 100 MWe (više od 300 MWt, ovisno o izvedbi).

2.1.2. Ratni brodovi

Sve aktivne vojne podmornice i svi aktivni nosači aviona u SAD su na nuklearni pogon. I neke druge države poput Francuske, Velike Britanije, Indije, Rusije i Kine imaju podmornice i/ili nosače aviona na nuklearni pogon. SAD i Rusija imaju i krstarice na nuklearni pogon [3], [4].

2.1.3. Snaga reaktora

Nova klasa nosača aviona SAD, Gerald R. Ford, koristi reaktore čija se snaga procjenjuje na 700 MWt.

2.1.4. Analiza rizika

Detaljni podaci o reaktorima nosača aviona nisu dostupni uslijed njihove povjerljivosti. Stoga se kao glavni izvor koriste podaci iz međunarodnih dokumenata, prvenstveno iz studije

1 Sukladno Pomorskom zakoniku („Narodne novine“, broj 181/04, 76/07, 146/08, 61/11, 56/13 i 26/15), nuklearni brod je brod opremljen uređajem na nuklearni pogon
2 Sukladno Pomorskom zakoniku, izraz ratni brod uključuje i podmornicu
Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

2.1.4.1. Mogućnost najavljenog ulaska plovila na nuklearni pogon u teritorijalne vode Republike Hrvatske

Civilni nuklearni brodovi koji su trenutno aktivni predviđeni su za djelovanje u zoni oko Arktika. Malo je vjerojatno da će neki od njih uploviti u vode Sredozemnog mora, a posebno u Jadranko more.

Ukoliko nuklearna podmornica uđe u teritorijalne vode Republike Hrvatske (na primjer, dolazak u diplomatski posjet), ponašat će se kao bilo koji drugi brod, odnosno, plovit će samo na površini mora. U tom se slučaju i s radiološke strane može razmatrati isto kao i drugi ratni nuklearni brodovi.

2006. i 2015. godine nosači aviona su već uplovljavali u teritorijalne vode Republike Hrvatske te je i nadalje moguće očekivati njihov ponovni dolazak. To posebno vrijedi za nosače aviona SAD-a.

2016. godine podmornica Republike Francuske na nuklearni pogon uplovila je u teritorijalne vode i u unutarnje morske vode Republike Hrvatske.

2.1.4.2. Razmatrani događaj

Nosač aviona na nuklearni pogon opremljen je sigurnosnim sustavima koji i u slučaju velike LOCA-e osiguravaju da ne dođe do taljenja jezgre, uključujući i sustav kojim se reaktor može potopiti morskom vodom (koja se nakon toga skladišti u brodu, ne ispušta se natrag u more) (Fact Sheet on U.S. Nuclear Powered Warship (NPW) Safety) [11]. S obzirom da su podaci o

3 To približno odgovara vjerojatnosti taljenja jezgre u klasičnoj PWR elektrani rađenoj od 60-ih do 80-ih godina prošlog stoljeća, 1 u 20000 godina pogona (Feretić i suradnici, Nuklearne elektrane) [7]
tim sustavima klasificirani kao tajni te time i nedostupni, konzervativno treba pretpostaviti da se ne mogu uključiti tijekom razmatranog događaja.

Zaštitni odjeljak ima funkciju zaštitne zgrade kod konvencionalne PWR (Pressurized Water Reactor, reaktor s vodom pod tlakom) elektrane i može izdržati sav dodatni tlak nastao taljenjem jezgre i isparavanjem vode [6], [11]. Uz to, trup vojnog broda, sa svim zatvorenim izlazima, je također neprobojna struktura koja sprečava izlazak radioaktivnog materijala iz broda. Prema [6], konzervativno se može pretpostaviti da i zaštitni odjeljak i trup broda propuštaju 1% volumnog sadržaja dnevno, što iznosi ukupno 0,01% volumnog sadržaja rastaljene jezgre dnevno.

Reaktor (te time i zaštitni odjeljak) na nuklearnim brodovima je daleko manji od standardnog PWR reaktora nuklearne elektrane (i pripadajuće zaštitne zgrade). Vrlo je malo vjerojatno da integritet zaštitnog odjeljka može popustiti zbog nadtlaka nastalog taljenjem reaktora. Također nije vjerojatno da može doći do gubitka integriteta trupa, osim u slučajevima razmatranim te odbačenim u prvom paragrafu ovog poglavlja. Konzervativna pretpostavka za razmatrani događaj je da je ispuštanje 10 puta veće, 0,1% volumnog sadržaja jezgre dnevno, i da volumna brzina ispuštanja ostaje jednak na kada nadtlak u zaštitnom odjeljku pada.

2.1.4.3. Rezultati proračuna

Rezultati analize provedene u [6] pokazuju da je potrebna evakuacija ljudi u zoni od 800 m oko nosača aviona te da bi moglo biti potrebno zaklanjanje i/ili jedna profilaksa, ali ne evakuacija, u zoni od 1,9 km oko nosača aviona. Analiza pretpostavlja da će se unutar 2 sata od događaja nosač zrakoplova dovoljno udaljiti da ne predstavlja opasnost, to jest, pretpostavlja se ispuštanje koje traje točno dva sata (uvjet u Australskoj legislativi za uplovljavanje nosača zrakoplova na nuklearni pogon u australske teritorijalne vode).

Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

U gore opisanom slučaju nema potrebe za evakuacijom, a ovisno o atmosferskim prilikama, pritom se najvećim dijelom misli na brzinu vjetra, može biti potrebno zaklanjanje na obali. Međutim, bez poduzimanja daljnjih mjera zaštite moguće je znatno ozračenje štitnjače radioaktivnim jodom I-131. Kao što je utvrđeno i u [6], glavni izvor tog ozračenja je konzumacija jodom kontaminirane hrane i vode poslije nesreće. Posebice se to odnosi na mljeko namijenjeno djeci. Važno je primijeniti mjere zaštite koje uključuju osiguravanje alternativnih, nekontaminiranih izvora hrane i pića. Pritom nije preporučljivo oslanjati se na jodnu profilaksu kao dovoljnu mjeru, jer se ona uobičajeno provodi dok postoji opasnost udisanja joda iz oblaka, a većina potencijalnog ozračenja jodom je posljedica konzumacije kontaminirane hrane i pića.

Slika 1 i Slika 2 prikazuju primjere novih rezultata analize napravljene za Gerald R. Ford klasu nosača aviona.

S obzirom da je reaktor nosača aviona klase Gerald R. Ford reaktor najveće snage koji se koristi na brodovima, provedena analiza je konzervativna za sve ostale ratne nuklearne brodove.

Slika 1 – primjer rezultata za klasu Gerald R. Ford
2.1.5. Zaključak

Prilikom ulaska ratnih nuklearnih brodova u teritorijalne vode Republike Hrvatske potrebno je unaprijed definirati lokaciju sidrenja koja, za nosače aviona, ako je ikako moguće, nije bliža od 1,9 km od obale, a svakako nije bliža od 800 m od obale.

Za svaki ratni nuklearni brod koji ulazi u teritorijalne vode i unutarnje morske vode Republike Hrvatske potrebno je napraviti analizu sličnu [12] koristeći unaprijed definiranu lokaciju sidrišta te lokalnu vremensku prognozu.

Nije vjerojatno da bi u slučaju nesreće bila potrebna evakuacija stanovništva. Na osnovu analize iz prethodnog paragrafa moguće je utvrditi hoće li biti potrebno zaklanjanje ili jedna profilaksa.

U slučaju nesreće kod koje je došlo do taljenja reaktora, vrlo je vjerojatno da će biti potrebna primjena određenih mjera zaštite, prvenstveno zabrana konzumacije hrane i pića porijeklom s područja preko kojeg je prošao radioaktivni oblak, što će se naknadno utvrditi mjerenjima na terenu.
Za eventualne civilne brodove bit će potrebno napraviti analize za svaki brod ili tip broda, ovisno o karakteristikama istih.

2.2. Procjena ugroženosti Republike Hrvatske od Nuklearne elektrane Krško

2.2.1. Specifična procjena ugroženosti za Nuklearnu elektrranu Krško

PSA je dokument unutar kojeg nuklearna elektrana:
- procjenjuje učestalost oštećenja jezgre i utvrđuje glavne sekvence nastanka nesreća;
- utvrđuje komponente ili sustave čija neraspoloživost znatno doprinosi učestalosti oštećenja jezgre;
- utvrđuje sve funckije, prostorne i ljudske ovisnosti koje znatno doprinose učestalosti oštećenja jezgre;
- prezentira računalni model elektrane;
- rangira sekvence i komponente koje uzrokuju nesreće prema njihovoj relativnoj važnosti;
- ocjenjuje radno iskustvo elektrane;
- ocjenjuje tehničke specifikacije elektrane i operativne limite;
- podržava odluke o prilagođavanju novim regulativama i projektnim izmjenama.

Tijekom godina se PSA razvijao i danas postoje tri razine:
- PSA razina 1, u kojoj se određuje učestalost oštećenja jezgre – analizira se dizajn i rad opreme te je fokusirana na tijek akcidenata koji mogu dovesti do taljenja jezgre;
- PSA razina 2, u kojoj se uz rezultate iz PSA razine 1 uključuju analize ispusta radioaktivnosti u okoliš, što uključuje i proces taljenja jezgre i odziva zaštitne zgrade u takvim uvjetima, kako bi se utvrdila frekvencija ispuštanja iz iste;
- PSA razina 3, koja uz podatke iz PSA razine 2 uključuje procjene zdravstvenih posljedica na stanovništvo; pruža kvalitetan uvid u efikasnost mjera za prevenciju nesreća i njihovo upravljanje u smislu ublažavanja štetnih posljedica na zdravlje, kontaminaciju zemlje, zraka, vode i hrane, te pruža prikaz relativne učinkovitosti upravljanja nesrećom u sklopu planiranja – PSA razina 3 omogućava dimenzioniranje odgovarajućih planskih zona pripravnosti.
PSA razina 3 nije obavezan dokument za izdavanje ili produljenje dozvole za rad NEK-a te isti NEK nije izradila.

Bez PSA razine 3 ili ekvivalentnog dokumenata nije moguće točno procijeniti posljedice nesreće u nuklearnoj elektrani na okolno stanovništvo uvažavajući sve posebnosti elektrane, lokacije, lokalnog vremena te infrastrukture. Stoga se procjena ugroženosti može napraviti jedino na temelju konzervativnih generičkih analiza za određeni tip i snagu nuklearnih elektrana.

2.2.2. Generička procjena ugroženosti za lakvodne elektrane

Na svjetskoj razini promjene u sustavu pripravnosti i odgovora na izvanredni događaj uobičajeno počinju izdavanjem analiza i preporuka Međunarodne komisije za zaštitu od zračenja (International Commission for Radiological Protection, ICRP). Na temelju tih preporuka Europska Unija i IAEA izdaju daljnje dokumente, uključujući analize, preporuke, direktive Europske Unije te sigurnosne zahtjeve IAEA. Tek po objavi tih dokumenata te se preporuke uključuju u sustave pripravnosti i odgovora na izvanredni događaj u zemljama članicama Europske Unije. Taj proces traje više godina, često i desetljeće.

Dva važna dokumenta su objavljena u skladu s novim smjernicama, a uključuju i preporuke nastale temeljem iskustava iz nesreće u nuklearnoj elektrani Fukushima-Daichi 2011. godine: [8] i [9].

4 U Republici Hrvatskoj su te preporuke preuzete Uredbom o mjerama zaštite od ionizirajućeg zračenja te postupanjima u slučaju izvanrednog događaja, „Narodne novine“ 24/18.
2.2.2.1. Zone pripravnosti preporučene temeljem novih smjernica Međunarodne komisije za zaštitu od zračenja

Sukladno najnovijim standardima, oko nuklearne elektrane preporučaju se četiri zone pripravnosti: PAZ, UPZ, EPD i ICPD.

Zona PAZ (Precautionary Action Zone - Zona za poduzimanje preventivnih mjera zaštite i drugih mjera) podrazumijeva primjenu opsežnih postupaka koji su unaprijed pripremljeni, a odnose se na uzbunjivanje javnosti i provedbu hitnih mjera zaštite i drugih mjera unutar sat vremena od proglašenja opće opasnosti u nuklearnoj elektrani (General Emergency). Na taj način nastoji se pokrenuti poduzimanje mjera zaštite prije početka ispuštanja i tako spriječiti determinističke učinke ispuštanja. Granicu zone PAZ treba odrediti tako da se minimizira vrijeme potrebno za evakuaciju. Evakuaciju se, ako ju je moguće sigurno provesti, ne odgađa ako je u međuvremenu do ispuštanja već došlo. Također, evakuacija iz zone PAZ ima prednost u odnosu na evakuaciju iz zone UPZ.

Zona UPZ (Urgent protective action Planning Zone - Zona za poduzimanje hitnih mjera zaštite i drugih mjera), kao i zona PAZ, podrazumijeva primjenu opsežnih postupaka koji su unaprijed pripremljeni, a odnose se na uzbunjivanje javnosti i provedbu hitnih mjera zaštite unutar sat vremena od proglašenja opće opasnosti. Cilj je pokrenuti postupke mjera zaštite prije ili kratko vrijeme nakon početka ispuštanja s time da se ne ometa ili usporava već započeta primjena mjera zaštite unutar zone PAZ.

Zona EPD (Extended Planning Distance, - Proširena planska udaljenost) podrazumijeva primjenu sljedećih mjera zaštite nakon proglašenja opće opasnosti:

a) upute za smanjenje unosa radioaktivnosti prehranom,

b) nadzor brzine doze od depozicije sa svrhom utvrđivanja lokalnih kontaminacija (hot spots) koja mogu prouzročiti potrebu za evakuacijom unutar jednog dana odnosno potrebu za preseljenjem unutar tjedan do mjesec dana.

Zona ICPD (Ingestion and Commodities Planning Distance - Planska udaljenost za ograničenje konzumacije prehrambenih proizvoda) podrazumijeva primjenu sljedećih mjera zaštite nakon proglašenja opće opasnosti:

a) zaštita ispaše i druge stočne hrane,

b) zaštita zaliha pitke vode,

c) ograničenje konzumacije lokalnih prehrambenih proizvoda,

d) prestanak distribucije proizvoda i robe sve dok se ne provedu odgovarajuće radiološke procjene.

2.2.2.2. Smjernice unutar dokumenta „Actions to Protect the Public in an Emergency due to Severe Conditions at a Light Water Reactor“

Dokument [9] prikazuje cjeloviti osvrt na intervencijske i akcijske razine (OILs - Operational Intervention Levels, EALs - Emergency Action Levels), preporuke za
dimenzioniranje planskih zona te vremenski tijek poduzimanja potrebnih mjera zaštite i drugih mjera. Također, u dokumentu se daju konkretnie upute za sva postupanja u slučaju nuklearne nesreće, uključujući i njihov vremenski slijed, a sve u cilju zaštite stanovništva i smanjenja posljedica u slučaju same nesreće. Navedene upute uključuju i savjete za komunikaciju s javnošću. Tablica 1 daje prikaz planskih zona pripravnosti za poduzimanje mjera zaštite i drugih mjera u slučaju nuklearne nesreće, temeljem preporuka u [9].

<table>
<thead>
<tr>
<th>Planske zone</th>
<th>Preporučeni vanjski radijusi</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAZ</td>
<td>3 - 5 km</td>
</tr>
<tr>
<td>UPZ</td>
<td>15 - 30 km</td>
</tr>
<tr>
<td>EPD</td>
<td>100 km</td>
</tr>
<tr>
<td>ICPD</td>
<td>300 km</td>
</tr>
</tbody>
</table>

Tablica 1 rezultat je analiza čitavog spektra relevantnih scenarija ispuštanja, ponašanja radioaktivnog ispusta u atmosferi te uzimanja u obzir učinkovitosti različitih zaštitnih strategija. U tablici navedene radijuse planskih zona treba smatrati prvom aproksimacijom te ih prilagoditi specifičnostima postrojenja, akcidentalnim scenarijima i lokalnim meteorološkim i topografskim uvjetima. Pri tome se u obzir uključuju sljedeći dozimetrijski kriteriji:

a) PAZ - 1 Gy (deterministički učinci, inhalacija i vanjsko zračenje)

b) UPZ - 100 mSv (stohastički učinci, inhalacija).

Proračuni se odnose na nuklearne elektrane s termičkom snagom od 3.000 MW, ispuštanjem 10% hlapivih fizijskih produkata iz jezgre, ispustom koji bi se događao na razini zemlje za kojeg se pretpostavlja da bi trajao 10 sati. Glavnina očekivanih ispusta iz jezgre reaktora tijekom teške nesreće je unutar 0,5-2% hlapivih fizijskih produkata (npr. I i Cs) dok maksimalno očekivani isput korišten u proračunima iznosi 10%.

Meteorološki uvjeti modelirani su kao D klasa stabilnosti. Računalo se s promjenom smjera vjetra od 90° tijekom ispusta od 10 h bez oborina. Uzeto se u obzir i ponašanje lokalnog stanovništva. Zapravo, uzeti su u obzir redukcijski faktori za zaklanjanje i jednu profilaksu. Evakuacija nije uzeta u obzir u osnovnom proračunu, ali je analizom osjetljivosti pokazano da je evakuaciju potrebno poduzeti u zoni PAZ (3-5 km). Također, ista analiza ukazuje da je evakuacija koja bi se odvijala brzinom većom od 5 km/h (brzina hoda) efikasnija u zaštitnom smislu od zaklanjanja.

Bez obzira na činjenicu da ispust može trajati i nekoliko dana, evakuaciju, ukoliko se može sigurno provesti, ne bi trebalo odgađati zato što ispust traje. S druge strane, zaklanjanje kao samostalna mjera zaštite ne smatra se dovoljno učinkovitom. Jedna profilaks ta je potrebna u krugu 15-30 km. Stoga, kombinacija jedne profilakse i zaklanjanja u velikim zgradama
Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

(naročito u podzemnim skloništima) u velikoj mjeri smanjuje izloženost stanovništva dozama u slučaju da sigurnu evakuaciju nije moguće organizirati.

Da bi jedna profilaksa bila učinkovita potrebno ju je primijeniti neposredno prije ili kratko nakon inhalacije tj. unutar 2 h od inhalacije radioaktivnog joda. Stoga bi, a sve u cilju zaštite stanovništva i smanjenja posljedica nuklearne nesreće, jedne tablete zajedno s uputama o korištenju trebalo unaprijed distribuirati tako da se mogu trenutno uzeti u domovima, školama, radnim mjestima, bolnicama i drugim specijalnim objektima unutar PAZ i UPZ zona. Jodnu profilaksu potrebno je poduzeti odmah nakon proglašenja opće opasnosti, tj. kada je ustanovljeno takvo stanje u nuklearnoj elektrani koje bi moglo dovesti do ispuštanja. Svjetska zdravstvena organizacija (World Health Organization, WHO) predlaže primjenu jedne doze profilakse, koja je uobičajeno dovoljna za 24 h. U slučaju dužeg ili ponovljenog ispusta moguća je primjena dodatne doze za novorođenčad i trudnice. Višestruka primjena jedne profilakse ne može biti zamjena za evakuaciju tijekom dužeg ispusta (dulje od 24 h).

Radijus zone UPZ, 15-30 km, određen je s ciljem izbjegavanja doze veće od 100 mSv. Navedeni cilj se može postići zaklanjanjem na udaljenosti 30 km od nuklearne elektrane u manjim stambenim zgradama i kućama, a već na 15 km od nuklearne elektrane ako se zaklanjanje vrši u masivnim objektima (na primjer, veće stambene zgrade). U slučaju primjene jedne profilakse prije ili kratko nakon ispuštanja, kriterij od 100 mSv za fetus bit će dosegnut na 20 km u slučaju zaklanjanja unutar velike zgrade, odnosno na 30 km u slučaju zaklanjanja unutar manje stambene zgrade.

Slika 3 prikazuje odnos udaljenosti i koncentracije radionuklida u ispuštu, te odabir vanjskih radijusa zona PAZ i UPZ.

Slika 3 – prikaz smanjenja koncentracije s udaljenošću

Slika 3 pokazuje smanjenje koncentracije za faktor 10 unutar zone PAZ (3-5 km). U slijedećih 10 km to se smanjenje dodatno povećava za faktor 3. Slijedeće smanjenje za dodatan
faktor 3 postiže se na udaljenosti od narednih 25 km (ukupno sve do 40 km od nuklearne elektrane). Nastavno iznesenom, zaključuje se da bi smanjenje radijusa za zonu PAZ na manje od 3 km trebalo izbjegavati budući značajno povećava rizik za stanovništvo u tom području, dok je radijus veći od 5 km potrebno pozorno razmotriti kako izbor većeg radijusa ne bi usporio provedbu mjera zaštite za najugroženije skupine iz okolnog stanovništva.

Radijus manji od 15 km za zonu UPZ trebalo bi izbjegavati zbog povećanog rizika za stanovništvo u tom području oko nuklearne elektrane. Radijus zone UPZ iznad 30 km bi se trebao dobro razmotriti jer povećanje udaljenosti pruža vrlo malu dodatnu korist zbog malog smanjenja doze povećanjem udaljenosti od nuklearne elektrane, a moglo bi i usporiti primjenu mjera zaštite u područjima bližim nuklearnom elektrani. Radijuse zona koji bi bili za faktor 2 manji ili veći od preporučenih (Tablica 1) treba izbjegavati, osim ako nisu podržani specifičnim analizama vezanim za nuklearnu elektranu o kojoj je riječ, jer bi se u tom slučaju promijenile i osnove za intervencijske razine.

Utjecaj toplinske snage nuklearne elektrane na radijuse zona je linearan i od drugorazredne važnosti uzimajući u obzir nesigurnosti povezane s veličinom ispusta, sastavom, visinom ispusta i njegovim trajanjem te meteorološkim uvjetima. Za Republiku Hrvatsku je bitno da je toplinska snaga NEK 2000 MW, a toplinske snage ostalih reaktora unutar 300 km od granice ispod 1500 MW. Linearna ovisnost znači da bi u slučaju nesreće u NEK brzina doze i primljena doza stanovništva bili 33% manji od onih izračunatih za ekvivalentnu nesreću u referentnoj elektrani u proračunima u ovom poglavlju, a u slučaju nesreće u ostalim elektranama udaljenim manje od 300 km od hrvatske granice 50% manji od onih izračunatih za ekvivalentnu nesreću u referentnoj elektrani u proračunima u ovom poglavlju (Slika 4). Međutim, utjecaj ostalih nesigurnosti na proračun predviđenih i primljениh doza u slučaju nesreće je jedan do dva reda veličine.

![Slika 4 – doze za fetus bez primjene jodne profilakse](image)
U dokumentu [9] preporučena je evakuacija u fazama. Prvo evakuacija iz zone PAZ, a potom iz zone UPZ da bi se izbjeglo eventualno usporavanje evakuacije najugroženijeg stanovništva. Preporuka je da se stanovništvo iz zone PAZ evakuiru izvan zone UPZ te da se potom pokrene evakuacija stanovništva iz zone UPZ. Također je moguće očekivati i spontanu evakuaciju (samoevakuaciju) stanovništva iz zone UPZ kao i izvan službeno proglašenih planskih zona za evakuaciju, što se treba uzeti u obzir prilikom planiranja.

Unutar zone EPD (100 km) potrebne su planske pripreme (prije ispusta) za praćenje brzina doza od depozicije nakon prolaska oblasta. Navedene pripreme je potrebno obaviti kako bi se u slučaju ispusta mogla identificirati kontaminirana područja (hot spots) koja zahtijevaju evakuaciju unutar jednog do nekoliko dana ili relokaciju stanovništva. Preporučena je evakuacija iz zone PAZ, a potom iz zone UPZ da bi se izbjeglo eventualno usporavanje evakuacije najugroženijeg stanovništva.

Preporuka je da se stanovništvo iz zone PAZ evakuiru izvan zone UPZ te da se potom pokrene evakuacija stanovništva iz zone UPZ. Također je moguće očekivati i spontanu evakuaciju (samoevakuaciju) stanovništva iz zone UPZ kao i izvan službeno proglašenih planskih zona za evakuaciju, što se treba uzeti u obzir prilikom planiranja.

Unutar zone EPD (100 km) potrebne su planske pripreme (prije ispusta) za praćenje brzina doza od depozicije nakon prolaska oblasta. Navedene pripreme je potrebno obaviti kako bi se u slučaju ispusta mogla identificirati kontaminirana područja (hot spots) koja zahtijevaju evakuaciju unutar jednog do nekoliko dana ili relokaciju stanovništva. Preporučena je evakuacija iz zone PAZ, a potom iz zone UPZ da bi se izbjeglo eventualno usporavanje evakuacije najugroženijeg stanovništva.

Preporučeno je evakuacija u fazama. Prvo evakuacija iz zone PAZ, a potom iz zone UPZ da bi se izbjeglo eventualno usporavanje evakuacije najugroženijeg stanovništva. Preporuka je da se stanovništvo iz zone PAZ evakuiru izvan zone UPZ te da se potom pokrene evakuacija stanovništva iz zone UPZ. Također je moguće očekivati i spontanu evakuaciju (samoevakuaciju) stanovništva iz zone UPZ kao i izvan službeno proglašenih planskih zona za evakuaciju, što se treba uzeti u obzir prilikom planiranja.

Radijus zone ICPD, 300 km, je radijus unutar kojega je potrebno poduzeti hitne mjere ograničavanja potrošnje i distribucije lokalnih proizvoda (npr. gljiva, divljači, mlijeka životinja na ispuštanja) i kontaminiranog mlijeka u radijusu od 300 km oko nuklearne elektrane. I na udaljenostima većim od 200 km, što bi prema gornjem kriteriju zahtijevalo preseljenje. Prema tome, potrebu za preseljenje treba predvidjeti i izvan EPD zone. Planiranje radijusa od 100 km za zonu EPD pruža dobre osnove za proširenje nadzora ukoliko se za tim ukaže potreba.

Prema tome, potrebu za preseljenje treba predvidjeti i izvan EPD zone. Planiranje radijusa od 100 km za zonu EPD pruža dobre osnove za proširenje nadzora ukoliko se za tim ukaže potreba.

Radijus zone ICPD, 300 km, je radijus unutar kojega je potrebno poduzeti hitne mjere ograničavanja potrošnje i distribucije lokalnih proizvoda (npr. gljiva, divljači, mlijeka životinja na ispuštanja) i kontaminiranog mlijeka u radijusu od 300 km oko nuklearne elektrane. I na udaljenostima većim od 200 km, što bi prema gornjem kriteriju zahtijevalo preseljenje. Prema tome, potrebu za preseljenje treba predvidjeti i izvan EPD zone. Planiranje radijusa od 100 km za zonu EPD pruža dobre osnove za proširenje nadzora ukoliko se za tim ukaže potreba.

Radijus zone ICPD, 300 km, je radijus unutar kojega je potrebno poduzeti hitne mjere ograničavanja potrošnje i distribucije lokalnih proizvoda (npr. gljiva, divljači, mlijeka životinja na ispuštanja) i kontaminiranog mlijeka u radijusu od 300 km oko nuklearne elektrane. I na udaljenostima većim od 200 km, što bi prema gornjem kriteriju zahtijevalo preseljenje. Prema tome, potrebu za preseljenje treba predvidjeti i izvan EPD zone. Planiranje radijusa od 100 km za zonu EPD pruža dobre osnove za proširenje nadzora ukoliko se za tim ukaže potreba.

Radijus zone ICPD, 300 km, je radijus unutar kojega je potrebno poduzeti hitne mjere ograničavanja potrošnje i distribucije lokalnih proizvoda (npr. gljiva, divljači, mlijeka životinja na ispuštanja) i kontaminiranog mlijeka u radijusu od 300 km oko nuklearne elektrane. I na udaljenostima većim od 200 km, što bi prema gornjem kriteriju zahtijevalo preseljenje. Prema tome, potrebu za preseljenje treba predvidjeti i izvan EPD zone. Planiranje radijusa od 100 km za zonu EPD pruža dobre osnove za proširenje nadzora ukoliko se za tim ukaże potreba.
pašnjacima. Unutar dva dana od ispusta konzumirano mlijeko u opticaju bilo je kontaminirano. Stoga, ograničenja moraju biti primijenjena prije nego što je uzimanje uzoraka i mjerenje moguće provesti.

Dokument [9] izričito naglašava da granice zona pripravnosti ne mogu imati prekid na međudržavnim granicama. U preporuci predloženi radijusi zona predstavljaju razumne udaljenosti za planove pripravnosti u slučaju nesreće u nuklearnjoj elektrani i određeni su s ciljem što učinkovitije reakcije na nesreću. Iako su zone PAZ i UPZ određene radijusima, u stvarnosti one bi trebale biti ograđene cestama, administrativnim granicama lokalnih zajednica, rijekama ili slično. Slika 5 daje generički prikaz zona PAZ i UPZ i njihov odnos prema međudržavnoj granici.

![Slika 5 – kvalitativni prikaz zona PAZ i UPZ i međudržavne granice](image)

2.2.2.3. HERCA/WENRA Pristup

Approach for a better cross-border coordination of protective actions during the early phase of a nuclear accident [8] je dokument nastao zajedničkim radom organizacija HERCA (Heads of the European Radiological protection Competent Authorities) i WENRA (Western European Nuclear Regulators Association). Dokument je nastao na temelju analize postojećih sustava pripravnosti i odgovora na izvanredni događaj zemalja članica Europske unije, novih dokumenata ICRP-a i događaja u Fukushimi. Dokument [8] se prvenstveno odnosi na ranu fazu nesreće u nuklearnjoj elektrani i sadrži upute za postupanje u toj fazi nesreće.

2.2.2.3.1. Postupanje u ranoj fazi nesreće

U slučaju nedostatka pouzanih informacija u ranoj fazi nesreće, pokretanje hitnih mjera zaštite treba se vršiti prema takozvanim faktorima prosudbe procjene situacije (*Judgement Evaluation Factors, JEF*). Tablica 2 prikazuje tri faktora identificirana u [8]:

![Diagram](image)
Tablica 2 – vrijednosti JEF-ova

<table>
<thead>
<tr>
<th>JEF</th>
<th>Opis</th>
<th>Moguće vrijednosti JEF-a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postoji li rizik taljenja jezgre?</td>
<td>Da</td>
</tr>
<tr>
<td>2</td>
<td>Održava li se integritet zaštitne zgrade?</td>
<td>Da</td>
</tr>
<tr>
<td>3</td>
<td>Kakav je smjer vjetra?</td>
<td>Stabilan</td>
</tr>
</tbody>
</table>

Pritom se podrazumijeva da proglašenje najviše klase opasnosti nuklearne elektrane (General Emergency) uvijek znači mogućnost taljenja jezgre.

Početni integritet zaštitne zgrade karakterizira ukupno strukturno stanje zaštitne zgrade nakon inicijalnog događaja. Integritet zaštitne zgrade može biti narušen, na primjer, udarom zrakoplova u zaštitnu zgradu ili eksplozijom unutar zaštitne zgrade, ili ako se inicijalni događaj dogodi u vrijeme kada je zaštitna zgrada otvorena. Tijekom razvoja nesreće manje povećanje propuštanja zaštitne zgrade ne bi se trebalo smatrati gubitkom integriteta zaštitne zgrade. Međutim, ako se očekuje snažna eksplozija unutar zaštitne zgrade, integritet zaštitne zgrade bi se trebao smatrati izgubljenim (JEF 2 = Ne).

Smjer vjetra, ako je poznat, je potrebno razmatrati za vremenski interval u kojem se očekuje znatno ispuštanje.

2.2.2.3.2. Mjere zaštite

Hitne mjere zaštite koje se mogu poduzeti u najranijoj fazi nesreće su zaklanjanje, jodna profilaksa i evakuacija.

Zaklanjanje podrazumijeva korištenje građevina za zaštitu od radioaktivnog oblaka i/ili depozicije radionuklida.

Jodna profilaksa (ITB, Iodine Thyroid Blocking) podrazumijeva primjenu pripravka stabilnog joda, kako bi se blokiralo nakupljanje radioaktivnog joda u štitnoj žlijezdi u slučaju nesreće koja uključuje ispuštanje radioaktivnog joda.

Evakuacija podrazumijeva brzo privremeno uklanjanje ljudi iz određenog područja kako bi se izbjeglo ili smanjilo kratkotrajno izlaganje radijaciji tijekom izvanrednog događaja. Evakuacija sadrži određene rizike, pogotovo ako se provodi dok radioaktivni oblak prolazi nad tim područjem.

HERCA i WENRA preporučaju zaklanjanje i jednu profilaksu kako se smatra da bi se evakuacija vršila dok radioaktivni oblak prolazi nad tim područjem. U ostalim slučajevima, uključujući i slučaj kad se ne može procijeniti vrijeme ispuštanja, preporuča se evakuacija (sukladno JEF-ovima).

Ostale mjere zaštite, uključujući zabranu konzumacije hrane i proizvoda s određenog područja, nisu u domeni dokumenta [8].
2.2.2.3.3. Planske zone

U slučaju nuklearnih nesreća, potrebno je planirati evakuaciju do udaljenosti od 5 km te zaklanjanje i jodnu profilaksu do udaljenosti od 20 km. Nadalje, potrebno je uzeti u obzir proširenje i na veće udaljenosti u slučaju kada je izgubljen integritet zaštitne zgrade (JEF2 = Ne) i očekuje se veliko ispuštanje.

Važno je napomenuti da je postojeće zone PAZ i UPZ, ako postoje u državnom planu odgovora na izvanredne situacije, potrebno adaptirati i koristiti u HERCA-WENRA pristupu.

Ovisno o prognoziranim vremenskim uvjetima u vrijeme kada se očekuje veliko ispuštanje, mjere je potrebno provesti samo u sektorima koji mogu biti pogođeni ispuštom, a ne u cijelom krugu oko elektrane. S druge strane, ako se razmatraju mjere u cijelom krugu oko elektrane zbog izostanka vjetra, moguće je smanjiti radijus u kojem se provode mjere zaštite. HERCA i WENRA predlažu sektore od 30°, ali moguće je koristiti i druge veličine, ako već postoje u nacionalnoj legislativi (na primjer, 22,5°). Važno je istaknuti da promjene u vremenskim uvjetima mogu zahtijevati prilagodbu sektora u kojima se poduzimaju mjere zaštite s vremenom. Također, odlučeno je da se sektorima u kojima se poduzimaju mjere zaštite uvijek dodaje unutarnji krug (princip ključanice) radijusa najmanje 1 km (prilagođeno lokalnim uvjetima). Na udaljenosti većoj od 20 km radijalni sektori pokrivaju velike površine i ne moraju biti pogodni, te razgrančenje temeljeno na regionalnim značajkama (rijeke, granice lokalne samouprave,...) treba uzeti u obzir nakon što je dostupno više informacija o radiološkoj situaciji.

Koristeći HERCA-WENRA pristup, potrebno je koristiti princip predostrožnosti. Prema tome, u slučaju kada postoji mogućnost taljenja jezgre (JEF1 = Da ili Nepoznato) i kada ne postoje naznake gubitka integriteta zaštitne zgrade (JEF2 = Da ili Nepoznato) i vremenski interval do ispuštanja je nepoznat, potrebno je implementirati sljedeće mjere zaštite (Tablica 3):

Tablica 3 – mjere zaštite prema HERCA-WENRA

<table>
<thead>
<tr>
<th>Mjera zaštite</th>
<th>Udaljenost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evakuacija i ITB</td>
<td>Do 5 km</td>
</tr>
<tr>
<td>Zaklanjanje i ITB</td>
<td>Do 20 km</td>
</tr>
</tbody>
</table>

U istom slučaju, ako se može procijeniti vrijeme ispuštanja, evakuacija stanovništva iz područja unutar 5 km od elektrane ovisi o vremenu potrebnom za evakuaciju. Ako je vrijeme potrebno za evakuaciju manje od očekivanog vremena prije ispuštanja, potrebno je odmah pokrenuti evakuaciju. Ako se očekuje da će do ispuštanja doći prije nego što se završi
evakuacija, potrebno je pokrenuti zaklanjanje u cijelom krugu od 20 km, bez evakuacije. Tablica 4 prikazuje preporučene mjere zaštite ovisno o očekivanom vremenu ispuštanja.

Ostale mjere zaštite ne ovise o vremenu ispuštanja jer je vrijeme potrebno za primjenu zaklanjanja i jedne profilakse relativno kratko, ako su preparati joda unaprijed distribuirani. Kako se zaklanjanje ne može primjenjivati dulje vrijeme, potrebno ga je pripremiti odmah, a pokrenuti nekoliko sati prije ispuštanja.

Tablica 4 – mjere zaštite prema HERCA-WENRA kad je poznato vrijeme ispuštanja

<table>
<thead>
<tr>
<th>Mjera zaštite</th>
<th>Udaljenost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t_{\text{evac}} > t_{\text{release}}$</td>
</tr>
<tr>
<td>Evakuacija i ITB</td>
<td>-</td>
</tr>
<tr>
<td>Zaklanjanje i ITB</td>
<td>do 20 km</td>
</tr>
</tbody>
</table>

Ako je integritet zaštitne zgrade izgubljen zbog inicijalnog događaja ili razvoja nesreće (na primjer, pad aviona ili snažna eksplozija unutar zaštitne zgrade, JEF2 = Ne) i očekuje se taljenje jezgre reaktora (JEF1 = Da), proširene mjere zaštite, kao što su evakuacija do 20 km udaljenosti od elektrane te zaklanjanje i jedna profilaksa do 100 km od elektrane, će postati nužne. Dodatna jedna profilaksa za djecu i izvan navedene udaljenosti može također biti potrebna. Tablica 5 prikazuje potrebne mjere zaštite ovisno o udaljenosti za slučaj kada je JEF1 = Da i JEF2 = Ne.

Tablica 5 – mjere zaštite prema HERCA-WENRA kad je izgubljen integritet zaštitne zgrade

<table>
<thead>
<tr>
<th>Mjera zaštite</th>
<th>Udaljenost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evakuacija i ITB</td>
<td>do 20 km</td>
</tr>
<tr>
<td>Zaklanjanje i ITB</td>
<td>20 do 100 km</td>
</tr>
</tbody>
</table>

Ako je smjer vjetra (JEF3) poznat i stabilan, moguće je mjere zaštite provesti samo u određenim susjednim sektorima. Ako smjer vjetra nije poznat, mjere zaštite treba provesti u zoni od 360° oko elektrane do definiranih udaljenosti.

Slika 6 prikazuje podjelu na sektore prema HERCA-WENRA metodi te kontinuitet sektora i područja poduzimanja mjera zaštite bez obzira na državnu granicu.
2.2.2.3.4. Organizacija

HERCA-WENRA pristup zahtjeva brzu procjenu JEFova od strane stručnjaka, na temelju dostupnih informacija. Pravovremena komunikacija između operatera i tijela zaduženih za sigurnost stanovništva bi znatno povećala mogućnost brze procjene JEFova. Stoga bi nacionalni program koji se u znatnoj mjeri, ali ne u potpunosti, temelji na operaterima olakšao HERCA-WENRA pristup

Eksperte odgovorne za procjene potrebno je unaprijed imenovati. Robusni komunikacijski sustav treba biti uspostavljen između svih uključenih u evaluaciju situacije i izradu preporuka za mjere zaštite.

2.2.2.3.5. Zaključak

Nastavno iznesenom, zaključak je da se mora znatno poboljšati suradnja susjednih zemalja u slučaju izvanrednog događaja koji može utjecati na teritorij dvije ili više zemalja. U dokumentu [8] je također predložena najmanja zajednička razina pripreme za teške akcidente u nuklearnim elektranama, koja bi trebala biti zajednička za sve zemlje Europske Unije. To bi osiguralo da i u ranoj fazi teške nesreće u nuklearnoj elektrani, kada je na raspolaganju vrlo malo informacija, susjedne zemlje postupaju jednako. Minimalne mjere uključuju:

- pripremu evakuacije unutar 5 km od nuklearne elektrane, a zaklanjanja i primjene jodne profilakse unutar 20 km od elektrane;
- strategiju za proširenje područja evakuacije do 20 km od elektrane, a proširenje područja primjene zaklanjanja i jodne profilakse do 100 km od elektrane;
- nastavak rada na kompatibilnim sustavima odgovora na nuklearnu nesreću u cijeloj Europi.

2.2.2.4. Suradnja Slovenije i Hrvatske

Regulatorna tijela za nuklearnu sigurnost Hrvatske i Slovenije te ostali sudionici sustava pripravnosti i odgovora na izvanredni događaj u NEK su od kraja 2013. godine do početka

\[5\) Nije primjenjivo u slučaju RH, jer operateri nisu pod nadležnošću tijela RH

24 od 56

2.2.2.5. Direktive Europske Unije i sigurnosni zahtjevi Međunarodne agencije za atomsku energiju

Dokument [2] definira zone sukladno dokumentu [9], ali bez preporučenih udaljenosti. To je uobičajeno za IAEA praksu, gdje se u najvišoj razini dokumenata (Requirements) navode koncepti, koji se potom razrađuju u nižim razinama dokumenata.

2.2.2.6. Usporedba IAEA pristupa i HERCA-WENRA pristupa

Prva zona, PAZ, u [9], radijusa od 3-5 km oko elektrane, je definirana kao zona u kojoj je potrebno provesti evakuaciju u slučaju proglašenja Opće opasnosti (najvišeg stupnja opasnosti) u nuklearnoj elektrani (General Emergency). Navedena zona odgovara prvoj zoni u [8], radijusa 5 km, gdje je potrebno provesti evakuaciju ukoliko postoji rizik taljenja jezgre (u slučaju proglašenja General Emergency uvijek se smatra da postoji mogućnost taljenja jezgre).

Prema [9], druga zona, UPZ, treba imati radijus između 15 km i 30 km oko elektrane i u njoj je također potrebno provesti evakuaciju u slučaju proglašenja Opće opasnosti (General Emergency), ali na način da ne omata evakuaciju iz zone PAZ (ako nije drugačije izvedivo, evakuacija iz zone UPZ se može pokrenuti po završetku evakuacije iz zone PAZ). Prema [8], u drugoj zoni, radijusa 20 km oko elektrane, u slučaju mogućnosti taljenja jezgre potrebno je...
provesti zaklanjanje i jodnu profilaksu, te imati spremnu strategiju evakuacije, koja se poduzima u slučaju naznaka gubitka integriteta zaštitne zgrade.

2.2.3. Posebne analize rađene za Nuklearnu elektranu Krško

Iako PSA analiza razine tri nije napravljena, NEK, URSJV (Uprava Republike Slovenije za jedrsko varnost, slovensko regulatorno tijelo za nuklearnu sigurnost) i DZRNS su izradili određene proračune posljedica nesreće u NEK na okolno stanovništvo (Estimation of Fission Products Release to Environment for Station Blackout (SBO) Accident Following Passive Containment Filtered Vent (PCFV) System Installation [23], Analiza ogroženosti območij okoli NE Krško v primeru jedrske nesreče [24], Revision of Risk Significance Evaluation Based on the Actual Design Characteristic of PAR-s [25], An Attempt to Harmonize Emergency Planning Zones And Other Emergency Parameters Between the Republic of Slovenia And the Republic of Croatia [26], Assessment and prognosis during the NPP accident in Croatia [27], razni interni proračuni DZRNS-a i URSJV-a).

Navedeni proračuni potvrđuju da izmjene izvedene tijekom remonta u NEK 2013. godine osiguravaju da u većini nesreća neće biti potrebne hitne mjere zaštitne na udaljenosti većoj od 3 km. Međutim, postoji grupa mogućih ispuštanja nakon nesreće navedenih u dokumentu NEK Source Term Recalculation [28] (gubitak integriteta zaštitne zgrade tijekom nesreće, rano propuštanje zaštitne zgrade nakon nesreće, zaobilazećenje zaštitne zgrade) čija je zajednička vjerojatnost veća od 10⁻⁶/god, u slučaju čijeg nastanka bi bilo neophodno poduzimati hitne mjere zaštitne na udaljenosti većoj od 3 km, a u slučaju izuzetno nepovoljnih vremenskih uvjeta i do 100 km od elektrane.
2.2.4. Zaključak

2.2.4.1. Definiranje zaštitnih zona

Na osnovu posebnih analiza posljedica nesreća rađenih za NEK, generičkih analiza rizika rađenih za PWR elektrane i nedostatka sveobuhvatne specifične analize rizika za NEK (PSA razina 3), očito je da se mjere zaštite za NEK trebaju planirati na osnovu generičkih analiza za taj tip reaktora. Razmatrane generičke analize su dane u [8] i [9].

Teritorij Republike Hrvatske se ne može nalaziti unutar zone PAZ.

Zonu UPZ je poželjno definirati tako da je u skladu i s [8] i s [9] što je moguće postići zonom radijusa od 20 km od elektrane. U toj zoni trebaju biti pripremljeni planovi za zaklanjanje, jednu profilaksu i evakuaciju, a uvjete pokretanja hitnih mjera zaštite DZRNS treba definirati drugim dokumentima u sklopu razvoja sustava odgovora na izvanredni događaj u NEK.

Zona EPD, sukladno [8] i [9], treba biti radijusa 100 km oko NEK. Uvjeti za pokretanje mjera zaštite u toj zoni DZRNS treba također definirati drugim dokumentima u sklopu već spomenutog razvoja sustava odgovora na izvanredni događaj u NEK.

Preporučena veličina zone ICPD je, prema [9], radijus od 300 km oko elektrane. S obzirom da je to većina teritorija Republike Hrvatske, zonu ICPD je potrebno proširiti na cijelu Hrvatsku.

Radijusi zona predstavljaju prvi stupanj definiranja zona. Ako bi se strogo pridržavalo takvih definicija, u pojedinim bi se slučajevima dogodilo da bi npr. isti grad ili naselje bilo smješteno u dvije zone, odnosno da bi ga granična linija među zonama dijelila u dva dijela. Kako zona potencijalne ugroženosti određuje razinu pripremljenosti za nuklearnu nesreću, slijedi da bi se u jednom dijelu takvog grada ili naselja za nesreću pripremalo na jedan način, a u drugom na drugačiji način. Barem su dva razloga zbog kojih bi takvo stanje bilo veoma nepovoljno:

1) djelovanje postrojbi civilne zaštite organizirano je prema administrativnom ustrojstvu jedinica lokalne samouprave i uprave, pa je najprihvatljivije da se na čitavom području pojedine jedinice lokalne samouprave i uprave (općine, grada) pripreme za nuklearnu nesreću provode na identičan način i

2) za stanovništvo bi sa psihološkog aspekta bilo u potpunosti neprihvatljivo da se npr. jedna strana ulice u naselju za nesreću priprema opsežnije, a druga manje opsežno.

Pritom treba imati u vidu da zone znatno veće od gore navedenih ne znače i veću sigurnost stanovništva, jer veće opterećenje službi koje provode mjere zaštite može značiti da te mjere mogu kasniti tamo gdje su najpotrebnejši. Također treba imati u vidu da korištenje administrativnih granica jedinica regionalne i lokalne samouprave i uprave može značiti znatne razlike u udaljenostima na kojima se primjenjuju iste mjere zaštite, što bi također moglo biti problematično sa psihološkog aspekta za stanovništvo.
Sukladno gore navedenom, pri određivanju zona će se znatna pažnja posvetiti sljedećim principima:

1) svaka pojedina zona će se, ako je to moguće, odrediti na samo jednoj razini regionalne i lokalne samouprave i uprave (županije, općine i gradovi);

2) Jedinice regionalne i lokalne samouprave ulaze u zonu ako se unutar pripadajućeg definiranog radijusa nalazi većina stanovništva te jedinice, dvije trećine površine te jedinice ili administrativni centar jedinice regionalne ili lokalne samouprave;

3) variranja udaljenosti vanjske granice pojedine zone od nuklearne elektrane bi se, koliko je moguće, trebala držati u intervalu između 90% i 110% definiranog radijusa, a svakako u intervalu između 75% i 125% definiranog radijusa;

4) prihvatljivije je da je udaljenost granice zone veća od preporučenog radijusa nego da je manja, posebno za odstupanja blizu 25%;

5) ako se princip 2 ne može poštovati uz princip 1, onda se na dijelovima područja zona određuje sljedećom nižom razinom teritorijalnog uređenja (općine i gradovi u županijama, odnosno mjesne samouprave i naselja u općinama i gradovima) i

6) prelazak s razine općina i gradova na razinu mjesnih samouprava je krajnja mjera koja se primjenjuje samo kada je neophodno.

Na osnovu navedenog, odlučeno je:

1) Zonu UPZ oko NEK čine općine i gradovi Krapinsko-zagorske i Zagrebačke županije koji se nalaze na manje od 20 km od NEK, sukladno gore navedenim principima. S obzirom da su najudaljenije mjesne samouprave grada Samobora te općina Kumrovec, Zagorska sela i Žumberak udaljene više od 25 km od NEK, u zoni UPS se nalaze samo mjesne samouprave i naselja tih jedinica lokalne samouprave čiji se dijelovi nalaze na manje od 20 km od NEK, sukladno gore navedenim principima. Tablica 6 u poglavlju 2.4 sadrži popis svih općina i gradova koji se cijeli nalaze u zoni UPZ te popis svih mjesnih samouprava i naselja grada Samobora te općina Kumrovec, Zagorska sela i Žumberak koja se nalaze u zoni UPZ.

2) Zonu EPD oko NEK čine općine i gradovi Krapinsko-zagorske i Zagrebačke županije koji se ne nalaze u zoni UPZ, grad Zagreb, te općine i gradovi Bjelovarsko-bilogorske, Karlovačke, Koprivničko-križevačke, Međimurske, Primorsko-goranske i Sisačko-moslavačke županije koji se nalaze na manje od 100 km od NEK, sukladno gore navedenim principima. Tablica 7 u poglavlju 2.4 sadrži popis svih općina i gradova koji se nalaze u zoni EPD te popis svih mjesnih samouprava i naselja grada Samobora te općina Kumrovec, Zagorska sela i Žumberak koja se nalaze u zoni EPD.

Zona ICPD za NEK pokriva cijelu Republiku Hrvatsku.

Slika 7 u poglavlju 2.4 prikazuje zonu UPZ oko NEK. Slika 8 u poglavlju 2.4 prikazuje zonu EPD oko NEK.
2.2.4.2. Radijalni sektori

2.2.4.3. Mjere zaštite

Poduzimanje mjera zaštite u prvoj fazi nesreće, dok ne postoji potpuna informacija, treba biti u skladu s HERCA-WENRA principom.

2.3. Ostale elektrane

Nuklearne opasnosti su izvanredni događaji u objektima prve i druge kategorije pripravnosti za izvanredni događaj. Prema međunarodnim preporukama ([9]) trebalo bi odrediti planske zone postupanja u slučaju izvanrednog događaja za sve nuklearne elektrane udaljene manje od 300 km od granica Republike Hrvatske. Uz NEK, to obuhvaća NE Pakš u Mađarskoj, NE Dukovany u Češkoj te NE Mochovce i NE Bohunice u Slovačkoj.

NE Pakš je oko 75 km od hrvatske granice, te je potrebno odrediti zone EPD i ICPD. NE Bohunice, NE Mochovice i NE Dukovany su između 240 km i 300 km od hrvatske granice. Prema [9], za te bi elektrane trebalo odrediti ICPD zonu.

Aktivni reaktori u NE Bohunice, NE Mochovice i NE Dukovany su modeli VVER 440/V-213, toplinske snage nešto manje od 1500 MWt. Proračuni u [9] su izrađeni za reaktor toplinske snage od 3000 MWt. S obzirom na duplo manju snagu i veliku udaljenost od Hrvatske, nije potrebno određivati ICPD zonu za navedene elektrane, već je, u slučaju nesreće u nekoj od tih elektrana, potrebno osigurati praćenje kretanja eventualnog radioaktivnog oblaka te poduzeti odgovarajuće mjere. Svakako je u tom slučaju potrebno i osigurati praćenje radioaktivnosti na poljoprivrednim površinama preko kojih je prošao oblak. Time se navedene elektrane ne smatraju objektima druge kategorije.

Sukladno principima iznesenim u poglavlju 2.2.4, Tablica 8 u poglavlju 2.4 sadrži popis svih općina i gradova u Osječko-baranjskoj županiji koji se nalaze u zoni EPD oko NE Pakš. Tablica 9 u poglavlju 2.4 sadrži popis svih županija koje se nalaze u zoni ICPD oko NE Pakš.
Slika 9 u Poglavlju 2.4 prikazuje zonu EPD oko NE Pakš. Slika 10 u poglavlju 2.4 prikazuje zonu ICPD oko NE Pakš.

2.4. Konačne zone

Tablica 6 – zona UPZ oko NEK

<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
<th>Općina</th>
<th>Naselje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Općina</td>
<td>Naselje</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Kraljevec na Sutli</td>
<td></td>
</tr>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Općina</td>
<td>Naselje</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Kumrovec</td>
<td>Kumrovec</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Kumrovec</td>
<td>Razvor</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Kumrovec</td>
<td>Risvica</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Zagorska Sela</td>
<td>Brezakovec</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Zagorska Sela</td>
<td>Plavić</td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Zagorska Sela</td>
<td>Zagorska Sela</td>
</tr>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Općina</td>
<td></td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Brdovec</td>
<td></td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Dubravica</td>
<td></td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Marija Gorica</td>
<td></td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Pušća</td>
<td></td>
</tr>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Općina</td>
<td>Naselje</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Glušinja</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Grič</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Hartje</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Javor</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Kalje</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Mrzlo Polje Žumberačko</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Petričko Selo</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Stari Grad Žumberački</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Tomaševci</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Višči Vrh</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Žumberak</td>
</tr>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Grad</td>
<td></td>
</tr>
<tr>
<td>UPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Klanjec</td>
<td></td>
</tr>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Grad</td>
<td>Naselje</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Beder</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Bobovica</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Bratelj</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Bregana</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Breganica</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Brezovac Žumberački</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Budinjak</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Celine Samoborske</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Cerovica</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Dane</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Domaslovec</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Draganje Selo</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Dragoňoš</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Dubrava Samoborska</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Farkaševec Samoborski</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Golubići</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Gornja Vas</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Gradna</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Grdanjci</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Gregurić Breg</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Hrastina Samoborska</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Jarušje</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Javorek</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Klokočevec Samoborski</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Kostanjevec Podvrški</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Kravljak</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Lug Samoborski</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Mala Jazbina</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Mala Rakovica</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Mali Lipovec</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Medsave</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Noršić Selo</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Novo Selo Žumberačko</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Osredek Žumberački</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Osunja</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Otruševac</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Podvrh</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Pokleki</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Samoborski Otok</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Savrščak</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Selce Žumberačko</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Sječevac</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Slani Dol</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Slapnica</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Smerovišće</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Stojdraga</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Šimraki</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Šipački Breg</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Tisovac Žumberački</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Velika Jazbina</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Veliki Lipovec</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Višnjevec Podvrški</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Vratnik Samoborski</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Vrhovac Samoborski</td>
</tr>
<tr>
<td>UPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
<td>Vrhovčak</td>
</tr>
</tbody>
</table>

Tablica 7 – zona EPD oko NEK

<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
<th>Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPZ</td>
<td>Bjelovarbsko-bilogorska županija</td>
<td>Čazma</td>
</tr>
<tr>
<td>EPZ</td>
<td>Grad Zagreb</td>
<td>Grad Zagreb</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Duga Resa</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Karlovac</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Ogulin</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Ozalj</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Slunj</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Križevci</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Donja Stubica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Krapina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Oroslavje</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Pregrada</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Zabok</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Zlatar</td>
</tr>
<tr>
<td>EPZ</td>
<td>Međimurska županija</td>
<td>Čakovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Međimurska županija</td>
<td>Mursko Središće</td>
</tr>
<tr>
<td>EPZ</td>
<td>Međimurska županija</td>
<td>Prelog</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Čabar</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Delnice</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Vrbovsko</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslavačka</td>
<td>Glina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslavačka</td>
<td>Petrinja</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslavačka</td>
<td>Sisak</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Ivanec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Lepoglava</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Ludbreg</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Novi Marof</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Varaždin</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Varaždinske Toplice</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Dugo Selo</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Ivanić-Grad</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Jastrebarsko</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Sveta Nedelja</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Sveti Ivan Zelina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Velika Gorica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Vrbovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Zaprešić</td>
</tr>
</tbody>
</table>

<p>| Zona | Županija | Grad | Naselje |
| EPZ | Zagrebačka županija | Samobor | Braslovje |
| EPZ | Zagrebačka županija | Samobor | Bukovje Podvrško |
| EPZ | Zagrebačka županija | Samobor | Cerje Samoborsko |</p>
<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
<th>Općina</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Dolec Podokički</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Drežnik Podokički</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Falaščak</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Galgovo</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Kladje</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Klake</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Konščica</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Kotari</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Manja Vas</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Molvice</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Pavičnjak</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Petkov Breg</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Podgrade Podokičko</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Prekrižje Plešivičko</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Rakov potok</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Rude</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Slavagora</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Sveti Martin pod Okičem</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Samobor</td>
</tr>
<tr>
<td></td>
<td>Zagrebačka županija</td>
<td>Velika Rakovica</td>
</tr>
<tr>
<td>Zona</td>
<td>Županija</td>
<td>Općina</td>
</tr>
<tr>
<td>Bjelovarsko-bilogorska županija</td>
<td>Rovišće</td>
<td></td>
</tr>
<tr>
<td>Bjelovarsko-bilogorska županija</td>
<td>Štefanje</td>
<td></td>
</tr>
<tr>
<td>Bjelovarsko-bilogorska županija</td>
<td>Zrinski Topolovac</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Barilović</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Bosiljevo</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Cetingrad</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Draganić</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Generalski Stol</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Josipdol</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Kamanje</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Krnjak</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Lasinja</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Netretić</td>
<td></td>
</tr>
<tr>
<td>Karlovačka županija</td>
<td>Plaški</td>
<td></td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Ribnik</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Tounj</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Vojnić</td>
</tr>
<tr>
<td>EPZ</td>
<td>Karlovačka županija</td>
<td>Žakanje</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Gornja Rijeka</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Kalnik</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Rasinja</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Sokolovac</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Sveti Ivan Žabno</td>
</tr>
<tr>
<td>EPZ</td>
<td>Koprivničko-križevačka županija</td>
<td>Sveti Petar Orehovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Bedekovčina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Budinščina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Desinić</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Durmanec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Gornja Stubica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Hrašćina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Hum na Sutli</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Jesenje</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Konjščina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Krapinske Toplice</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Lobar</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Mače</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Marija Bistrica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Mihovljan</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Novi Golubovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Petrovsko</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Radoboj</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Stubičke Toplice</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Sveti Križ Začretje</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Tuhelj</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Veliko Trgovišće</td>
</tr>
<tr>
<td>EPZ</td>
<td>Krapinsko-zagorska županija</td>
<td>Zlatar-Bistrica</td>
</tr>
</tbody>
</table>

Zona **Županija** **Općina** **Naselje**

| EPZ | Krapinsko-zagorska županija | Kumrovec | Donji Škrnik |

35 od 56
<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
<th>Općina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Međimurska županija</td>
<td>Belica</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Dekanovec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Domašinec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Donji Kraljevec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Gornji Mihaljevec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Mala Subotica</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Nedelišće</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Orehošćica</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Podturen</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Pribislavec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Selnica</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Strahoninec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Sveti Juraj na Bregu</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Sveti Martin na Muri</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Šenkovec</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Štrigova</td>
<td></td>
</tr>
<tr>
<td>Međimurska županija</td>
<td>Vratišinec</td>
<td></td>
</tr>
</tbody>
</table>
Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

<table>
<thead>
<tr>
<th>EPZ</th>
<th>Primorsko-goranska županija</th>
<th>Brod Moravice</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Fužine</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Lokve</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Mrkopalj</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Ravn Gora</td>
</tr>
<tr>
<td>EPZ</td>
<td>Primorsko-goranska županija</td>
<td>Skrad</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslovačka</td>
<td>Gvozd</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslovačka</td>
<td>Lekenik</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslovačka</td>
<td>Martinska Ves</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslovačka</td>
<td>Popovača</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslovačka</td>
<td>Topusko</td>
</tr>
<tr>
<td>EPZ</td>
<td>Sisačko-moslovačka</td>
<td>Velika Ludina</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Bednja</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Beretinec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Breznica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Breznički Hum</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Cestica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Donja Voća</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Gornji Kneginec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Jalžabet</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Klenovnik</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Ljubešćica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Mali Bukovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Martijanec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Maruševac</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Petrijanec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Sraćinec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Sveti Đurđ</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Sveti Ilija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Trnovec Bartolovečki</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Veliki Bukovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Vidovec</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Vinica</td>
</tr>
<tr>
<td>EPZ</td>
<td>Varaždinska županija</td>
<td>Visoko</td>
</tr>
</tbody>
</table>

37 od 56
<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
<th>Općina</th>
<th>Naselje</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Cernik</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Donji Oštrc</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Drašći Vrh</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Gornji Oštre</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Grgetići</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Jezernice</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Jurkovo Selo</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Kordići Žumberački</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Kostanjevac</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Kupčina Žumberačka</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Markušići</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Plavci</td>
</tr>
<tr>
<td>EPZ</td>
<td>Zagrebačka županija</td>
<td>Žumberak</td>
<td>Radinovo Brdo</td>
</tr>
</tbody>
</table>

38 od 56
Tablica 8 – zona EPD oko NE Pakš

<table>
<thead>
<tr>
<th>Zona</th>
<th>Općina</th>
<th>Županija</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPZ</td>
<td>Beli manastir</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Čeminac</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Draž</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Jagodnjak</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Kneževi vinogradi</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Petlovac</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>EPZ</td>
<td>Popovac</td>
<td>Osječko-baranjska županija</td>
</tr>
</tbody>
</table>
Tablica 9 – zona ICPD oko NE Pakš

<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICPD</td>
<td>Bjelovarsko-bilogorska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Brodsko-posavska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Grad Zagreb</td>
</tr>
<tr>
<td>ICPD</td>
<td>Karlovačka županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Koprivničko-križevačka županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Krapinsko-zagorska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Međimurska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Osječko-baranjska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Požeško-slavonska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Sisačko-moslavačka županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Varaždinska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Virovitičko-podravska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Vukovarsko-srijemska županija</td>
</tr>
<tr>
<td>ICPD</td>
<td>Zagrebačka županija</td>
</tr>
</tbody>
</table>
Slika 7 – zona UPZ oko Nuklearne elektrane Krško
Slika 8 – zona EPD oko Nuklearne elektrane Krško
Slika 9 – zona EPD oko Nuklearne elektrane Pakš
Slika 10 – zona ICPD oko Nuklearne elektrane Pakš
3. Radiološke opasnosti

Radiološke opasnosti su izvanredni događaji u objektima odnosno pri aktivnostima koje predstavljaju treću i četvrtu kategoriju pripravnosti za izvanredni događaj. Pritom je bitno istaknuti da ovaj dokument ne razmatra opasnosti od terorizma.

3.1. Udaljene nuklearne elektrane

Nuklearne elektrane Krško i Pakš predstavljaju petu kategoriju pripravnosti za izvanredni događaj za Republiku Hrvatsku. Ostale nuklearne elektrane u svijetu predstavljaju četvrtu kategoriju pripravnosti za izvanredni događaj. Poglavlje 2.3 obrađuje nuklearne elektrane koje se nalaze između 240 km i 300 km od granica Republike Hrvatske. Za nuklearne elektrane udaljene od 300 km međunarodne preporuke [9] ne predlažu uspostavu zona pripravnosti.

U slučaju izvanrednog događaja u nuklearnoj elektrani koja nije Nuklearna elektrana Krško ili Nuklearna elektrana Pakš, ne očekuje se da bi stanovništvo Republike moglo biti ozračeno iznad godišnjih granica niti da bi moglo dići do ograničenja upotreбе proizvoda, uključujući i poljoprivredne proizvode.

U slučaju prelaska radioaktivnog oblaka preko teritorija Republike Hrvatska, potrebno je nadzirati kretanje oblaka i provesti mjerenja nakon prolaska kako bi se pokazalo da stvarno nema potrebe za biološkim mjerama.

Tablica 10 – popis energetskih reaktora udaljenih manje od 1000 km od jednog od četiri najveća hrvatska grada

<table>
<thead>
<tr>
<th>Br</th>
<th>Naziv</th>
<th>Država</th>
<th>Tip</th>
<th>Topl. snaga (MW)</th>
<th>Zagreb</th>
<th>Rijeka</th>
<th>Osijek</th>
<th>Split</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Krško</td>
<td>Slovenija</td>
<td>PWR</td>
<td>1994</td>
<td>40</td>
<td>105</td>
<td>250</td>
<td>275</td>
</tr>
<tr>
<td>2</td>
<td>Paks 1</td>
<td>Mađarska</td>
<td>VVER-440 V213</td>
<td>1485</td>
<td>235</td>
<td>365</td>
<td>120</td>
<td>390</td>
</tr>
<tr>
<td>3</td>
<td>Paks 2</td>
<td>Mađarska</td>
<td>VVER-440 V213</td>
<td>1485</td>
<td>235</td>
<td>365</td>
<td>120</td>
<td>390</td>
</tr>
<tr>
<td>4</td>
<td>Paks 3</td>
<td>Mađarska</td>
<td>VVER-440 V213</td>
<td>1485</td>
<td>235</td>
<td>365</td>
<td>120</td>
<td>390</td>
</tr>
<tr>
<td>5</td>
<td>Paks 4</td>
<td>Mađarska</td>
<td>VVER-440 V213</td>
<td>1485</td>
<td>235</td>
<td>365</td>
<td>120</td>
<td>390</td>
</tr>
<tr>
<td>6</td>
<td>Bohunice 3</td>
<td>Slovačka</td>
<td>VVER-440 V213</td>
<td>1471</td>
<td>335</td>
<td>440</td>
<td>340</td>
<td>570</td>
</tr>
<tr>
<td>7</td>
<td>Bohunice 4</td>
<td>Slovačka</td>
<td>VVER-440 V213</td>
<td>1471</td>
<td>335</td>
<td>440</td>
<td>340</td>
<td>570</td>
</tr>
<tr>
<td>8</td>
<td>Mohovce 1</td>
<td>Slovačka</td>
<td>VVER-440 V213</td>
<td>1471</td>
<td>340</td>
<td>460</td>
<td>295</td>
<td>550</td>
</tr>
<tr>
<td>9</td>
<td>Mohovce 2</td>
<td>Slovačka</td>
<td>VVER-440 V213</td>
<td>1471</td>
<td>340</td>
<td>460</td>
<td>295</td>
<td>550</td>
</tr>
<tr>
<td>10</td>
<td>Dukovany 1</td>
<td>Češka</td>
<td>VVER-440 V213</td>
<td>1444</td>
<td>365</td>
<td>450</td>
<td>450</td>
<td>635</td>
</tr>
<tr>
<td>11</td>
<td>Dukovany 2</td>
<td>Češka</td>
<td>VVER-440 V213</td>
<td>1444</td>
<td>365</td>
<td>450</td>
<td>450</td>
<td>635</td>
</tr>
<tr>
<td>12</td>
<td>Dukovany 3</td>
<td>Češka</td>
<td>VVER-440 V213</td>
<td>1444</td>
<td>365</td>
<td>450</td>
<td>450</td>
<td>635</td>
</tr>
<tr>
<td>13</td>
<td>Dukovany 4</td>
<td>Češka</td>
<td>VVER-440 V213</td>
<td>1444</td>
<td>365</td>
<td>450</td>
<td>450</td>
<td>635</td>
</tr>
<tr>
<td>14</td>
<td>Temelin 1</td>
<td>Češka</td>
<td>VVER-1000 V320</td>
<td>3120</td>
<td>395</td>
<td>425</td>
<td>520</td>
<td>650</td>
</tr>
<tr>
<td>15</td>
<td>Temelin 2</td>
<td>Češka</td>
<td>VVER-1000 V320</td>
<td>3120</td>
<td>395</td>
<td>425</td>
<td>520</td>
<td>650</td>
</tr>
<tr>
<td>16</td>
<td>Isar 2</td>
<td>Njemačka</td>
<td>PWR</td>
<td>3950</td>
<td>415</td>
<td>390</td>
<td>590</td>
<td>645</td>
</tr>
<tr>
<td>17</td>
<td>Gunderemmm. C</td>
<td>Njemačka</td>
<td>BWR</td>
<td>3840</td>
<td>515</td>
<td>460</td>
<td>700</td>
<td>715</td>
</tr>
<tr>
<td>Br</td>
<td>Naziv</td>
<td>Država</td>
<td>Tip</td>
<td>Topl. snaga (MW)</td>
<td>Zagreb</td>
<td>Rijeka</td>
<td>Osijek</td>
<td>Split</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>18</td>
<td>Beznau 1</td>
<td>Švicarska</td>
<td>PWR</td>
<td>1130</td>
<td>605</td>
<td>525</td>
<td>820</td>
<td>770</td>
</tr>
<tr>
<td>19</td>
<td>Beznau 2</td>
<td>Švicarska</td>
<td>PWR</td>
<td>1130</td>
<td>605</td>
<td>525</td>
<td>820</td>
<td>770</td>
</tr>
<tr>
<td>20</td>
<td>Neckar 2</td>
<td>Njemačka</td>
<td>PWR</td>
<td>3850</td>
<td>610</td>
<td>560</td>
<td>800</td>
<td>815</td>
</tr>
<tr>
<td>21</td>
<td>Goesgen</td>
<td>Švicarska</td>
<td>PWR</td>
<td>3002</td>
<td>625</td>
<td>530</td>
<td>835</td>
<td>775</td>
</tr>
<tr>
<td>22</td>
<td>Leibstadt</td>
<td>Švicarska</td>
<td>BWR</td>
<td>3600</td>
<td>635</td>
<td>540</td>
<td>840</td>
<td>790</td>
</tr>
<tr>
<td>23</td>
<td>Kozloduy 5</td>
<td>Bugarska</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>655</td>
<td>750</td>
<td>450</td>
<td>585</td>
</tr>
<tr>
<td>24</td>
<td>Kozloduy 6</td>
<td>Bugarska</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>655</td>
<td>750</td>
<td>450</td>
<td>585</td>
</tr>
<tr>
<td>25</td>
<td>Muhleberg</td>
<td>Švicarska</td>
<td>BWR</td>
<td>1097</td>
<td>665</td>
<td>565</td>
<td>875</td>
<td>800</td>
</tr>
<tr>
<td>26</td>
<td>Fassenheim 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>670</td>
<td>580</td>
<td>880</td>
<td>825</td>
</tr>
<tr>
<td>27</td>
<td>Fassenheim 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>670</td>
<td>580</td>
<td>880</td>
<td>825</td>
</tr>
<tr>
<td>28</td>
<td>Philippsburg 2</td>
<td>Njemačka</td>
<td>PWR</td>
<td>3950</td>
<td>685</td>
<td>630</td>
<td>875</td>
<td>890</td>
</tr>
<tr>
<td>29</td>
<td>Grohnde</td>
<td>Njemačka</td>
<td>PWR</td>
<td>3900</td>
<td>820</td>
<td>810</td>
<td>975</td>
<td>1065</td>
</tr>
<tr>
<td>30</td>
<td>Bugey 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>825</td>
<td>710</td>
<td>1040</td>
<td>915</td>
</tr>
<tr>
<td>31</td>
<td>Bugey 3</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>825</td>
<td>710</td>
<td>1040</td>
<td>915</td>
</tr>
<tr>
<td>32</td>
<td>Bugey 4</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>825</td>
<td>710</td>
<td>1040</td>
<td>915</td>
</tr>
<tr>
<td>33</td>
<td>Bugey 5</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>825</td>
<td>710</td>
<td>1040</td>
<td>915</td>
</tr>
<tr>
<td>34</td>
<td>Cattenom 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>825</td>
<td>755</td>
<td>1015</td>
<td>1010</td>
</tr>
<tr>
<td>35</td>
<td>Cattenom 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>825</td>
<td>755</td>
<td>1015</td>
<td>1010</td>
</tr>
<tr>
<td>36</td>
<td>Cattenom 3</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>825</td>
<td>755</td>
<td>1015</td>
<td>1010</td>
</tr>
<tr>
<td>37</td>
<td>Cattenom 4</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>825</td>
<td>755</td>
<td>1015</td>
<td>1010</td>
</tr>
<tr>
<td>38</td>
<td>Saint-Alban 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>870</td>
<td>750</td>
<td>1080</td>
<td>950</td>
</tr>
<tr>
<td>39</td>
<td>Saint-Alban 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>870</td>
<td>750</td>
<td>1080</td>
<td>950</td>
</tr>
<tr>
<td>40</td>
<td>Cruas 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>880</td>
<td>760</td>
<td>1090</td>
<td>935</td>
</tr>
<tr>
<td>41</td>
<td>Cruas 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>880</td>
<td>760</td>
<td>1090</td>
<td>935</td>
</tr>
<tr>
<td>42</td>
<td>Cruas 3</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>880</td>
<td>760</td>
<td>1090</td>
<td>935</td>
</tr>
<tr>
<td>43</td>
<td>Cruas 4</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>880</td>
<td>760</td>
<td>1090</td>
<td>935</td>
</tr>
<tr>
<td>44</td>
<td>Tricastin 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>890</td>
<td>765</td>
<td>1080</td>
<td>930</td>
</tr>
<tr>
<td>45</td>
<td>Tricastin 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>890</td>
<td>765</td>
<td>1080</td>
<td>930</td>
</tr>
<tr>
<td>46</td>
<td>Tricastin 3</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>890</td>
<td>765</td>
<td>1080</td>
<td>930</td>
</tr>
<tr>
<td>47</td>
<td>Tricastin 4</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>890</td>
<td>765</td>
<td>1080</td>
<td>930</td>
</tr>
<tr>
<td>48</td>
<td>Tihange 1</td>
<td>Belgija</td>
<td>PWR</td>
<td>2873</td>
<td>935</td>
<td>875</td>
<td>1125</td>
<td>1135</td>
</tr>
<tr>
<td>49</td>
<td>Tihange 2</td>
<td>Belgija</td>
<td>PWR</td>
<td>3064</td>
<td>935</td>
<td>875</td>
<td>1125</td>
<td>1135</td>
</tr>
<tr>
<td>50</td>
<td>Tihange 3</td>
<td>Belgija</td>
<td>PWR</td>
<td>3000</td>
<td>935</td>
<td>875</td>
<td>1125</td>
<td>1135</td>
</tr>
<tr>
<td>51</td>
<td>Khmelnitski 1</td>
<td>Ukrajina</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>940</td>
<td>1065</td>
<td>800</td>
<td>1085</td>
</tr>
<tr>
<td>52</td>
<td>Khmelnitski 2</td>
<td>Ukrajina</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>940</td>
<td>1065</td>
<td>800</td>
<td>1085</td>
</tr>
<tr>
<td>53</td>
<td>Rovno 1</td>
<td>Ukrajina</td>
<td>VVER-440 V213</td>
<td>1375</td>
<td>940</td>
<td>1060</td>
<td>830</td>
<td>1115</td>
</tr>
<tr>
<td>54</td>
<td>Rovno 2</td>
<td>Ukrajina</td>
<td>VVER-440 V213</td>
<td>1375</td>
<td>940</td>
<td>1060</td>
<td>830</td>
<td>1115</td>
</tr>
<tr>
<td>55</td>
<td>Rovno 3</td>
<td>Ukrajina</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>940</td>
<td>1060</td>
<td>830</td>
<td>1115</td>
</tr>
<tr>
<td>56</td>
<td>Rovno 4</td>
<td>Ukrajina</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>940</td>
<td>1060</td>
<td>830</td>
<td>1115</td>
</tr>
<tr>
<td>Br</td>
<td>Naziv</td>
<td>Država</td>
<td>Tip</td>
<td>Topl. snaga (MW)</td>
<td>Udaljenost (km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zagreb</td>
<td>Rijeka</td>
<td>Osijek</td>
<td>Split</td>
</tr>
<tr>
<td>57</td>
<td>Chooz B1</td>
<td>Francuska</td>
<td>PWR</td>
<td>4270</td>
<td>950</td>
<td>885</td>
<td>1145</td>
<td>1135</td>
</tr>
<tr>
<td>58</td>
<td>Chooz B2</td>
<td>Francuska</td>
<td>PWR</td>
<td>4270</td>
<td>950</td>
<td>885</td>
<td>1145</td>
<td>1135</td>
</tr>
<tr>
<td>59</td>
<td>Emsland</td>
<td>Njemačka</td>
<td>PWR</td>
<td>3850</td>
<td>965</td>
<td>940</td>
<td>1130</td>
<td>1200</td>
</tr>
<tr>
<td>60</td>
<td>Cernavoda 1</td>
<td>Rumunjska</td>
<td>HWR</td>
<td>2180</td>
<td>965</td>
<td>1085</td>
<td>750</td>
<td>935</td>
</tr>
<tr>
<td>61</td>
<td>Cernavoda 2</td>
<td>Rumunjska</td>
<td>HWR</td>
<td>2180</td>
<td>965</td>
<td>1085</td>
<td>750</td>
<td>935</td>
</tr>
<tr>
<td>62</td>
<td>Nogent 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>980</td>
<td>890</td>
<td>1185</td>
<td>1130</td>
</tr>
<tr>
<td>63</td>
<td>Nogent 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>980</td>
<td>890</td>
<td>1185</td>
<td>1130</td>
</tr>
<tr>
<td>64</td>
<td>Brokdorf</td>
<td>Njemačka</td>
<td>PWR</td>
<td>3900</td>
<td>1000</td>
<td>1005</td>
<td>1125</td>
<td>1255</td>
</tr>
<tr>
<td>65</td>
<td>Belleville 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>1005</td>
<td>905</td>
<td>1210</td>
<td>1135</td>
</tr>
<tr>
<td>66</td>
<td>Belleville 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>3817</td>
<td>1005</td>
<td>905</td>
<td>1210</td>
<td>1135</td>
</tr>
<tr>
<td>67</td>
<td>Dampierre 1</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>1045</td>
<td>945</td>
<td>1250</td>
<td>1180</td>
</tr>
<tr>
<td>68</td>
<td>Dampierre 2</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>1045</td>
<td>945</td>
<td>1250</td>
<td>1180</td>
</tr>
<tr>
<td>69</td>
<td>Dampierre 3</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>1045</td>
<td>945</td>
<td>1250</td>
<td>1180</td>
</tr>
<tr>
<td>70</td>
<td>Dampierre 4</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>1045</td>
<td>945</td>
<td>1250</td>
<td>1180</td>
</tr>
<tr>
<td>71</td>
<td>Doel 1</td>
<td>Belgija</td>
<td>PWR</td>
<td>1311</td>
<td>1050</td>
<td>995</td>
<td>1240</td>
<td>1255</td>
</tr>
<tr>
<td>72</td>
<td>Doel 2</td>
<td>Belgija</td>
<td>PWR</td>
<td>1311</td>
<td>1050</td>
<td>995</td>
<td>1240</td>
<td>1255</td>
</tr>
<tr>
<td>73</td>
<td>Doel 3</td>
<td>Belgija</td>
<td>PWR</td>
<td>3054</td>
<td>1050</td>
<td>995</td>
<td>1240</td>
<td>1255</td>
</tr>
<tr>
<td>74</td>
<td>Doel 4</td>
<td>Belgija</td>
<td>PWR</td>
<td>2988</td>
<td>1050</td>
<td>995</td>
<td>1240</td>
<td>1255</td>
</tr>
<tr>
<td>75</td>
<td>Saint-Laurent B1</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>1090</td>
<td>995</td>
<td>1300</td>
<td>1225</td>
</tr>
<tr>
<td>76</td>
<td>Saint-Laurent B2</td>
<td>Francuska</td>
<td>PWR</td>
<td>2785</td>
<td>1090</td>
<td>995</td>
<td>1300</td>
<td>1225</td>
</tr>
<tr>
<td>77</td>
<td>South Ukraine 1</td>
<td>Ukrajina</td>
<td>VVER-1000 V302</td>
<td>3000</td>
<td>1165</td>
<td>1300</td>
<td>975</td>
<td>1225</td>
</tr>
<tr>
<td>78</td>
<td>South Ukraine 2</td>
<td>Ukrajina</td>
<td>VVER-1000 V338</td>
<td>3000</td>
<td>1165</td>
<td>1300</td>
<td>975</td>
<td>1225</td>
</tr>
<tr>
<td>79</td>
<td>South Ukraine 3</td>
<td>Ukrajina</td>
<td>VVER-1000 V320</td>
<td>3000</td>
<td>1165</td>
<td>1300</td>
<td>975</td>
<td>1225</td>
</tr>
</tbody>
</table>
Slika 11 – lokacije energetskih reaktora udaljenih manje od 1000 km od jednog od četiri najveća hrvatska grada
3.2. Pad satelita
Neki od satelita koji se šalju u zemljinu orbitu ili izvan nje koriste radioaktivni materijal kao pogonsko gorivo. Uglavnom se radioaktivni materijal koristi u radioizotopskim termoelektričnim generatorima (RTG), ali neki sateliti su koristili i fizijske reaktore. Danas se najčešće koriste napredne RTG-a i drugih radioizotopskih reaktora, a postoje planovi i za naprednih fizijskih reaktora. Najčešće korišteni radioaktivni izotop je Pu-238. Sr-90 se zasad koristi samo u RTG-ovima koji se koriste na Zemlji. Ostali radioizotopi, posebno Am-241 i Po-210 se zasad koriste uglavnom u prototipovima. U fizijskim reaktorima se koriste različiti oblici uranovog goriva.

Pad satelita s radioaktivnim materijalom je rijetkost, ali ih je nekoliko zabilježeno u svijetu. Najpoznatiji su izgaranje mjesečevog modula misije Apollo 13 1970. g. u Zemljinoj atmosferi, izgaranje ruskog satelita Kozmos 954 1978. g. iznad Kanade uz neuspjelo odvajanje nuklearnog reaktora, te pad rakete Mars 96 1996. g. iznad Tihog oceana ili Južne Amerike koja je nosila opremu za istraživanje Marsa, uključujući i četiri RTG-a.

Zajedničko svim padovima je da se mjesto pada može samo približno odrediti. Apollo 13 je imao kontroliranu putanju i vjeruje se da je radioaktivni materijal završio u brazdi Tonga neoštećena spremnika s Pu-238 na dubini većoj od 6 km. Nakon raspada Kozmosa 954 nad Kanadom, kanadski i američki stručnjaci su tijekom devet mjeseci potražili oko 124 000 km² teritorija Kanade i pronašli samo oko 1% procijenjene količine radioaktivnog goriva u reaktoru. Točno mjesto pada Marsa 96 nije poznato, pa je negdje na potezu istočni Tihi ocean-Čile-Bolivija-Amazona (Brazil)-Surinam-Francuska Gvajana-Atlantski ocean. Očekuje se da su spremnici s radioaktivnim materijalom, dizajnirani za spuštanje na Mars, ostali neoštećeni.

Navedeni slučajevi pokazuju velik problem nekontroliranog pada satelita. Nije moguće odrediti točno mjesto pada, a radioaktivni materijal se vjerojatno neće naći. Jedina moguća mjera zašтite je da se na cijelom području gdje je mogao pasti izda upozorenje da stanovništvo pazi i prijavi nepoznati metal, pogotovo ako izgleda nagorio i nalazi se u ili blizu kratera.

3.3. Radioaktivni izvori
Radioaktivni izvori se koriste u medicini, industriji i znanosti. U Republici Hrvatskoj postoji 40-ak nositelja odobrenja za uporabu radioaktivnih izvora koji se mogu smatrati potencijalno opasnim za život i zdravlje ljudi.

3.3.1. Otvoreni radioaktivni izvori
Otvoreni radioaktivni izvori se prvenstveno koriste u medicini, te u znanosti. U znanosti se uglavnom odjednom koriste količine koje ne mogu biti opasne za život i zdravlje ljudi.

Najveći rizik pri upotrebi otvorenih radioaktivnih izvora postoji pri rukovanju s izvorima u bolnici, odnosno pripremanju točne doze i primjeni na pacijentu. Pritom eventualni izvanredni događaj može ugroziti mali broj osoba. Za izbjegavanje neželjenih posljedica po život i zdravlje ljudi nužno je da ustanova koja upotrebljava otvorene radioaktivne izvore ima planove i procedure za slučaj izvanrednog događaja, prvenstveno njihova prosipanja. Također, bitno je
poštivati procedure provjere kontaminacije nakon rada s otvorenim izvorima, kako bi se osiguralo da ako je došlo do neprimjetnog prosipanja radioaktivnog materijala ono bude na vrijeme uočeno.

Nesreće prilikom korištenja otvorenih radioaktivnih izvora u Republici Hrvatskoj nemaju potencijala ugrožavanja života i zdravlja ljudi izvan prostora gdje se koriste.

3.3.2. Zatvoreni radioaktivni izvori
Zatvoreni radioaktivni izvori se koriste prvenstveno u industriji, a također u zdravstvu i znanosti. Mogu se koristiti na fiksnoj lokaciji ili kao pokretni izvori.

3.3.2.1. Fiksni zatvoreni radioaktivni izvori
U Republici Hrvatskoj se koriste fiksni zatvoreni radioaktivni izvori različitih aktivnosti, od kalibracijskih izvora koji ne mogu naštetić zahtjevnu odziv ljudi niti ako se nose u džepu do radijatora koji može ubiti čovjeka u nekoliko sekundi. Najčešći izvanredni događaji prilikom korištenja izvora su ispadanje izvora uz zaštitnog uredaja odnosno kvar na kontrolama koje trebaju izvor uvući nazad u zaštitni uredaj. Uz poštivanje procedura prilikom rada takvi događaji ne bi smjeli ugroziti život i zdravlje radnika. Ipak, u svijetu postoje slučajevi stradanja radnika, uključujući i smrtna slučajeve prilikom neopreznog rukovanja radijatorom.

Izvanredni događaji prilikom rada s fiksnim zatvorenim radioaktivnim izvorima mogu ugroziti mali broj osoba i nemaju potencijala ugrožavanja života i zdravlja ljudi izvan prostora gdje se koriste.

3.3.2.2. Pokretni zatvoreni radioaktivni izvori
Pokretni zatvoreni radioaktivni izvori se uglavnom koriste u industriji. Najčešće se koriste izvori druge kategorije – izvori koji, izvan zaštitnog uredaja, mogu rezultirati ozbiljnim zdravstvenim posljedicama, pa i smrću ljudi uz izvor.

Najčešći izvanredni događaji prilikom korištenja radioaktivnih izvora se događaju u radiografiji, ili zbog grešaka u radu ili zbog kvarova na uređajima. Ako se u potpunosti ne poštuju planovi i procedure za odgovor na takve izvanredne događaje, oni mogu dovesti do teških posljedica za zdravlje, pa čak i život ljudi. Ugroženi su prvenstveno radnici koji koriste taj izvor. Potencijal za ugrožavanje života i zdravlja drugih ljudi je malen, sve dok se poštuju barem osnovna pravila korištenja izvora u radiografiji (ograditi i označiti područje na kojem se koristi izvor).

3.3.3. Drugi izvanredni događaji
Osim izvanrednih događaja pri korištenju radioaktivnih izvora, postoje i drugi izvanredni događaji koji mogu ugroziti život i zdravlje ljudi. Najvažniji su potres, požar i krađa.

3.3.3.1. Potres
U slučaju jakog potresa, moguće je pucanje zaštite oko radioaktivnih izvora, bilo zbog snage samog potresa (na primjer, pucanje betonskih barijera koje služe kao štitovi pri korištenju radioaktivnih izvora visokih aktivnosti) ili zbog vezanih mehaničkih oštećenja (na primjer, pad ormara u kojem se nalaze spremnici s otvorenim radioaktivnim izvorima). U takvim
Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

slučajevima radioaktivni izvori predstavljaju opasnost za sve koji sudjeluju u traženju preživjelih i saniranju posljedica potresa na lokaciji. Stoga je neophodno da žurne službe i jedinice lokalne i područne (regionalne) samouprave imaju podatke o lokaciji opasnih izvora te da imaju planove i procedure za postupanje u slučaju potresa na tim lokacijama.

3.3.3.2. Požar

Požar je opasan jer može raspršiti radioaktivni materijal u zrak i tako ugroziti i područja izvan same lokacije na kojoj se koristi radioaktivni izvor. Neophodno je da su vatrogasci upoznati kada dolaze na intervenciju na lokaciju gdje se koriste radioaktivni izvori. U slučaju požara koji može ugroziti radioaktivni izvor, potrebno je osigurati mjerenje brzine doze ionizirajućeg zračenja u okolici lokacije, kako bi se osiguralo pravodobno informiranje javnosti u slučaju potrebe za poduzimanjem mjera zaštite.

3.3.3.3. Krađa

Krađa radioaktivnih izvora razmatrana u ovom dokumentu se odnosi na krađu kojoj cilj nije dolazak do radioaktivnog materijala.

U svijetu se događaju slučajevi krađe alata sa gradilišta kada se ukrade i spremnik s radioaktivnim izvorom za industrijsku radiografiju. Također su zabilježeni i slučajevi kada je ukradeno vozilo koje je prevozilo radioaktivni izvor. Zabilježeni su i slučajevi kada je izvor (najčešće spremnik s radioaktivnim izvorom za industrijsku radiografiju) nije ukraden, nego je zabranjen na terenu, a osoba koja ga je pronašla ga je odlučila prodati kao staro željezo. Svim tim slučajevima je zajedničko da se radioaktivni izvor, često vrlo opasan, nalazi kod osoba koje ne znaju da je u pitanju radioaktivni izvor niti kako njime rukovati. Potencijalne posljedice mogu biti velike, više teško, pa i smrtno, ozračenih osoba, kontaminirana velika površina i više tisuća ljudi koje je potrebno obraditi kako bi se utvrdilo koliko su ozračeni. Stoga je neophodno da se o svakom izgubljenom i ukradenom izvoru odmah obavijeste nadležne službe te da jedinice lokalne i područne (regionalne) samouprave znaju kako odgovoriti na taj događaj.

3.4. Otkriven izvor bez posjednika

Radioaktivni izvori koji se upotrebljavaju u Republici Hrvatskoj su upisani u registar koji vodi DZRNS. I u bivšoj Jugoslaviji je postojao sličan registar. Međutim, kvaliteta održavanja tog registra vjerojatno nije bila sukladna današnjim propisima i postoji mogućnost da, posebno u industrijskim postrojenjima koja su prestala s radom 90-ih, postoje radioaktivni izvori za koje se ne zna. Poseban su problem radioaktivni gromobrani postavljeni po cijeloj tadašnjoj Jugoslaviji za koje je vrlo vjerojatno da nisu svi u povijesnim popisima. Prema Zakonu o radiološkoj i nuklearnoj sigurnosti, zabranjena je uporaba radioaktivnih gromobrana u Republici Hrvatskoj te su svi već davno trebali biti stručno demontirani i zbrinuti. Problem mogu predstavljati gromobrani postavljeni na postrojenjima koja su prestala s radom, tj. u vlasništvu tvrtki koje su u stečaju ili koje su brisane iz registra Trgovačkog suda prije stupanja te odredbe na snagu.

Izvori bez posjednika ne moraju biti porijeklom iz Republike Hrvatske – otpadni metal se u Republiku Hrvatsku uvozi iz zemalja izvan Europske Unije te je moguće da se u tom metalu nalaze i izvori bez posjednika.

51 od 56
Izvor bez posjednika se može otkriti bilo gdje. Mjesta posebnog rizika su lokacije na kojima se prikuplja otpadni metal. Ukoliko se pravilno odgovori na taj izvanredni događaj, izvor bez posjednika ne predstavlja značajnu prijetnju. Međutim, nepravilan odgovor može rezultirati ozbiljnim posljedicama po život i zdravlje ljudi i velikom financijskom štetom. Posebno je opasna situacija kada se ne prepozna da se radi o radioaktivnom izvoru. Stoga je nužno da sve žurne službe i sve jedinice lokalne i područne (regionalne) samouprave imaju potrebne planove i procedure za odgovor na ovaj izvanredni događaj.

3.5. Izvanredni događaj u transportu

Radionuklidi se transportiraju svakodnevno. Najčešće se transportiraju otvoren izvori za medicinsku primjenu – s obzirom na kratko vrijeme poluraspada otvorenih izvora u medicini, potrebno ih je proizvoditi i dostavljati u bolnice vrlo često, pa i svakodnevno. Izotopi koji se koriste za radiografiju u industriji ili brahiterapiju u bolnicama imaju nešto dulje vrijeme poluraspada, tako da se trebaju mijenjati svakih nekoliko mjeseci. Slika 12 prikazuje lokacije na kojima se koriste otvoren i opasni izvori, kao i najčešće transportne rute u Republici Hrvatskoj.

Slika 12 – upotreba opasnih izvora i transportne rute u Republici Hrvatskoj
Procjena nuklearne i radiološke opasnosti za Republiku Hrvatsku

Pokreni zatvoreni radioaktivni izvori, posebno oni korišteni u industrijskoj radiografiji, se mogu prevoziti po cijeloj Hrvatskoj, ovisno o lokaciji gdje je posao.

Transport radionuklida u Republici Hrvatskoj se odvija gotovo isključivo cestovnim putem, riječni, pomorski i željeznički transport radionuklida je izuzetno rijedak.

Radioaktivni izvori se na teritoriju Republike Hrvatske prevoze sukladno standardima koje postavlja ADR [30]. To znači da su vozila jasno označena da prevoze opasni materijal – radioaktivni materijal, da su izvori u spremniku koji bi trebao izdržati prometnu nesreću te da vozač mora imati na jasno vidljivom mjestu proceduru za postupanje u slučaju izvanrednog događaja.

U slučaju prometne nesreće, direktno mogu biti ugroženi sudionici nesreće. Žurne službe i građani koji pomažu unesrećenim mogu biti ugroženi ako se ne prepozna da se radi o radioaktivnom materijalu.

Ako se pravilno odgovori na izvanredni događaj u transportu, radiološke posljedice će biti male ili nikakve. Međutim, nepravilan odgovor može rezultirati ozbiljnim posljedicama po život i zdravlje ljudi i velikom financijskom štetom, posebno ako se ne prepozna da se radi o radioaktivnom izvoru. Kako je transport radionuklida moguć na cijelom teritoriju Republike Hrvatske, nužno je da sve žurne službe i sve jedinice lokalne i područne (regionalne) samouprave imaju potrebne planove i procedure za odgovor na izvanredni događaj u transportu.
4. Literatura

[1]. Uredba o mjerama zaštitite od ionizirajućeg zračenja te postupanjima u slučaju izvanrednog događaja („Narodne novine“, br. 24/18]
[6]. The 2000 Reference Accident Used to Assess the Suitability of Australian Ports for Visits by Nuclear Powered Warships, ARPANSA, 2000
[7]. Feretić, Danilo; Čavlina, Nikola; Debrecin, Nenad Nuklearne elektrane, Školska knjiga, Zagreb, 1995
[8]. Approach for a better cross–border coordination of protective actions during the early phase of a nuclear accident, HERCA–WENRA, 2014
[9]. Actions to Protect the Public in an Emergency due to Severe Conditions at a Light Water Reactor, IAEA, 2013
[12]. Brod na nuklearni pogon u blizini Splita, DZRNS, 2015
[15]. Application of the Commission's Recommendations to the Protection of People Living in Long-term Contaminated Areas After a Nuclear Accident or a Radiation Emergency, ICRP Publication 111, Ann. ICRP 39 (3), 2009
[21]. Končno poročilo Delovne skupine za pripravo podlag ocene ogroženosti za jedrsko nesrečo v NEK, Delovna skupina za pripravo podlag ocene ogroženosti za jedrsko nesrečo v NEK, 2015
[22]. Izdvojeno mišljenje RH na Končno poročilo Delovne skupine za pripravo podlag ocene ogroženosti za jedrsko nesrečo v NEK, DZRNS, 2015

[23]. Estimation of Fission Products Release to Environment for Station Blackout (SBO) Accident Following Passive Containment Filtered Vent (PCFV) System Installation, NEK, 2013

[25]. Revision of Risk Significance Evaluation Based on the Actual Design Characteristic of PAR-s, NEK ESD-TR-12/14, 2014

[27]. Rašeta, Davor; Žamboki, Stela. Assessment and prognosis during the NPP accident in Croatia, predstavljen na International Experts’ Meeting on Assessment and Prognosis in Response to a Nuclear or Radiological Emergency, IAEA, 2015

[28]. NEK Source Term Recalculation, NEK ESD-TR-09/14, 2014

5. Kratice

ADR Accord européen relatif au transport international des marchandisesDangerées par Route
DZRNS Državni zavod za radiološku i nuklearnou sigurnost
EAL Emergency Action Levels
EPD Extended Planning Distance
HERCA Heads of the European Radiological protection Competent Authorities
IAEA International Atomic Energy Agency
ICPD Ingestion and Commodities Planning Distance
ICRP International Commission for Radiological Protection
LOCA Loss of Coolant Accident
MW Megawatt
MWt Megawatt thermal
NATO North Atlantic Treaty Organization
NE Nuklearna elektrana
NEK Nuklearna elektrana Krško
OIL Operational Intervention Levels
PAZ Precautionary Action Zone
PSA Probability Safety Assessment
PWR Pressurized Water Reactor
SAD Sjedinjene Američke Države
UK United Kingdom
UPZ Urgent protective action Planning Zone
URSJV Uprava Republike Slovenije za jedrsko varnost
WENRA Western European Nuclear Regulators Association
WHO World Health Organization